Files
APS/Labs/06. Main memory/README.md
Andrei Solodovnikov 85883858ac Переработка лабораторных работ, связанных с памятью (#89)
* Переработка лабораторных работ, связанных с памятью

Существенно переработаны ЛР3 и ЛР7:

Из ЛР3 убрано задание реализовать память данных. Эта память
использовалась только студентами ИВТ и только в рамках одной лабы.
В итоге использовалась готовая память, и ничего не мешает использовать
ее с самого начала.

Задание по реализации памяти инструкций также претерпело изменения.
Теперь код памяти инструкций предоставляется сразу. Это объясняется тем,
что код модуля состоит в общем-то из 4х строк, на которые тратится
слишком много времени (с учетом добавления тестбенча и проверок).
Кроме того, использование готового кода позволяет дать модуль чуть
посложнее (с параметризацией размера).

По итогу правок, третья лабораторная работа превращается чисто в
лабораторную по написанию регистрового файла, что должно положительно
сказаться на кривой сложности лаб. После второй лабы происходит слишком
резкий скачок в объемах работы.

Соответственно, в связи с тем, что память данных больше не делается на
третьей лабе, дополнительная ЛР по памяти данных с byte enable
необходимо перенести до реализации тракта данных.

* ЛР3, 5, 6. Правки из ревью

* ЛР7. Добавление иллюстраций
2024-07-02 10:24:41 +03:00

123 lines
15 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лабораторная работа 6 "Основная память"
Процессор CYBERcobra 2000 использовал в качестве основного хранилища данных регистровый файл, однако на практике 31-го регистра недостаточно для выполнения сложных программ. Для этих целей используется **основная память**, роль которой в нашей системе будет выполнять **память данных**.
## Цель
Описать память данных, с побайтовой адресацией.
## Материал для подготовки к лабораторной работе
Для успешного выполнения лабораторной работы, вам необходимо использовать навыки, полученные при написании [лабораторной работы №3](../03.%20Register%20file%20and%20memory/) "Регистровый файл и память инструкций";
## Теория
В задании по реализации памяти инструкций [лабораторной работы №3](../03.%20Register%20file%20and%20memory/) байтовая адресация была описана следующим образом:
> Байтовая адресация означает, что процессор способен обращаться к отдельным байтам в памяти (за каждым байтом памяти закреплен свой индивидуальный адрес).
Данное описание было дано не совсем корректным образом, чтобы в третьей лабораторной работе было более четкое понимание задания. В чем заключается некорректность? Процессор должен быть способен не только **обращаться** к отдельным байтам в памяти, но и **обновлять** в памяти любой отдельный байт, а также **считывать** отдельные байты.
Вопрос считывания отдельного байта будет решаться специальным модулем **загрузки и сохранения**, памяти данных при этом будет достаточно возвращать всё слово, содержащее запрашиваемый байт как это было уже делалось для памяти инструкций.
Нас интересует возможность памяти обновлять любой из байт в слове. Подобный функционал часто используется при реализации памяти и в системных интерфейсах, например AXI4 или APB. Для этого используется специальный сигнал, который называется `byte enable`. Разрядность этого сигнала равна числу байт в шине данных (в нашем случае разрядность `byte enable` составляет 4). Вы можете представить этот сигнал, как 4 провода, каждый из которых является сигналом разрешения записи для отдельной памяти с шириной данный в 1 байт.
Давайте разберемся как это будет работать. Допустим, мы хотим записать значение `0xA5` по адресу `0x6`. Поскольку мы работаем с байтовой адресацией, как и при реализации памяти инструкций, пришедший адрес необходимо будет разделить на 4 (см. _рис. 1_). В итоге мы получим указатель на первую 32-битную ячейку памяти (`6 / 4 = 1`). Однако, чтобы пришедшие данные были в итоге записаны не в нулевой байт первого слова (четвертый байт памяти), во второй, мы будем использовать сигнал `byte enable`, второй бит которого будет равен единице.
Чтобы данные остальных байт не были испорчены, при описании памяти на SystemVerilog нужно разделить запись в отдельные байты. Для того, чтобы получить доступ к отдельным диапазонам бит ячейки памяти, после указания индекса ячейки необходимо указать диапазон бит, к которым вы хотите получить доступ. К примеру, чтобы получить доступ к битам с 5-го по 3-ий 18-ой ячейки памяти, необходимо использовать следующую запись:
```SystemVerilog
mem[18][5:3];
```
Учитывайте и то, что комбинации значений бит в сигнале `byte enable` могут быть любыми: `0000`, `0100`, `0110`, `1111` и т.п.
## Задание
Реализовать память данных с поддержкой обновления отдельных байт в выбранной ячейке памяти.
У данного модуля будет шесть входных/выходных сигналов:
- вход тактового синхроимпульса
- вход запроса на работу с памятью
- вход сигнала разрешения записи
- 32-битный вход адреса
- 32-битный вход данных записи
- 32-битный выход данных синхронного чтения
Прототип модуля следующий:
```SystemVerilog
module data_mem
import memory_pkg::DATA_MEM_SIZE_BYTES;
import memory_pkg::DATA_MEM_SIZE_WORDS;
(
input logic clk_i,
input logic mem_req_i,
input logic write_enable_i,
input logic [ 3:0] byte_enable_i,
input logic [31:0] addr_i,
input logic [31:0] write_data_i,
output logic [31:0] read_data_o,
output logic ready_o
);
```
Как и память инструкций, память данных будет состоять из 32-битных ячеек, количество которых определяется параметром. Как и в памяти инструкций, необходимо использовать только младшие биты адреса в количестве, равном логарифму по основанию 2 от количества ячеек памяти, начиная со второго бита (см. код памяти инструкций из ЛР№3).
Отличие от памяти инструкций будет заключаться в:
- синхронном порте на чтение;
- наличии порта на запись;
- посредством этого порта на запись можно менять отдельные байты ячейки памяти.
Синхронный порт на чтение означает, что выдача данных по предоставленному адресу осуществляется не сразу же, а на следующий такт (см. _рис. 2_). Для этого, перед выходным сигналом ставится отдельный регистр. Таким образом, выдача данных с порта на чтение будет осуществляться не с помощью непрерывного присваивания, а посредством блока `always_ff` (см. практическую часть ЛР№3).
Также в памяти появилось три управляющих сигнала:
- `mem_req_i`,
- `write_enable_i`,
- `byte_enable_i`
и один статусный:
- `ready_o`.
Сигнал `mem_req_i` является сигналом запроса на работу с памятью. Без этого сигнала память не должна выполнять операции чтения/записи. Как сделать так, чтобы не происходило чтение без запроса? Например, не обновлять значение, считанное во время предыдущей операции чтения.
Сигнал `write_enable_i` является сигналом разрешения записи. Этот сигнал определяет, является ли пришедший запрос в память **запросом на запись**, либо же **запросом на чтение**.
Если `mem_req_i == 1` и `write_enable_i == 0`, то происходит запрос на чтение из памяти. В этом случае, необходимо записать в выходной регистр `read_data_o` значение из ячейки, на которую указывает `addr_i`. Во всех других случаях чтение из памяти не производится (`read_data_o` сохраняет предыдущее значение).
![../../.pic/Labs/lab_06_main_memory/fig_02.wavedrom.svg](../../.pic/Labs/lab_06_main_memory/fig_02.wavedrom.svg)
_Рисунок 2. Операции запросов на чтение._
Если `mem_req_i == 1` и `write_enable_i == 1`, то происходит запрос на запись в память. В этом случае, необходимо записать значение `write_data_i` в ячейку по, на которую указывает `addr_i`. Во всех других случаях (любой из сигналов `mem_req_i`, `write_enable_i` равен нулю), запись в память не производится. Запись необходимо производить только в те байты указанной ячейки, которым соответствуют биты сигнала `byte_enable_i`, равные единице.
![../../.pic/Labs/lab_06_main_memory/fig_03.wavedrom.svg](../../.pic/Labs/lab_06_main_memory/fig_03.wavedrom.svg)
_Рисунок 3. Операции запросов на запись._
Перед выходом `ready_o` должен стоять регистр, в который каждый такт записывается значение `mem_req_i` (см. _рис. 2_). Такая простая логика этого сигнала обеспечивается тем, что любой запрос обрабатывается гарантированно за 1 такт. В реальности, обращение в память может занимать сотни тактов процессора, причем их число бывает недетерминированным (нельзя заранее предсказать сколько тактов займет очередной запрос в память). Именно поэтому стандартные интерфейсы обычно используют такие сигналы как `ready` или `valid`, позволяющие синхронизировать разные блоки системы.
## Порядок выполнения работы
1. Внимательно ознакомьтесь с заданием. В случае возникновения вопросов, проконсультируйтесь с преподавателем.
2. Реализуйте память данных. Для этого:
1. В `Design Sources` проекта создайте `SystemVerilog`-файл `data_mem.sv`.
2. Опишите в нем модуль памяти данных с таким же именем и портами, как указано в задании.
1. Описание модуля будет схожим с описанием модуля памяти инструкций, однако порт чтения в этот раз будет **синхронным** (запись в него будет происходить в блоке `always_ff`). Количество ячеек памяти данных определяется параметром `DATA_MEM_SIZE_WORDS`, определенным в `memory_pkg`. Кроме того, необходимо будет описать логику записи данных в память.
2. Запись в ячейки памяти описывается подобно записи данных в [регистры](../../Basic%20Verilog%20structures/Registers.md), только при этом, происходит доступ к конкретной ячейке памяти с помощью входа `addr_i`.
3. Перед тем как обратиться к ячейке памяти, значение с `addr_i` необходимо преобразовать по аналогии с памятью инструкций.
4. Обратите внимание что работа с памятью должна осуществляться только когда сигнал `mem_req_i == 1`. В противном случае запись не должна производиться, а на шине `read_data_o` должен оставаться результат предыдущего чтения.
5. При этом запись должна вестись только в те байты выбранной ячейки памяти, которым соответствуют биты сигнала `byte_enable_i`, выставленные в `1`.
6. У памяти есть дополнительный выход `ready_o`, перед которым необходимо реализовать регистр, в который каждый такт записывается значение `mem_req_i`.
3. После описания памяти данных, её необходимо проверить с помощью тестового окружения.
1. Тестовое окружение находится [`здесь`](tb_data_mem.sv).
2. Для запуска симуляции воспользуйтесь [`этой инструкцией`](../../Vivado%20Basics/Run%20Simulation.md).
3. Перед запуском симуляции убедитесь, что в качестве top-level модуля выбран корректный (`tb_data_mem`).
4. **Во время симуляции, вы должны прожать "Run All" и убедиться, что в логе есть сообщение о завершении теста!**