ЛР6. Рефактор топ-левел модуля

* Feat(06/board):Переписывание sv модуля

* Ref(06/board/top.sv):Изм-ие положения модулей

* Fix(06/board):Испр-ие синхронного сброса

* Feat(pic/06/board/struct):Доб-ие схемы

* Ref(06/board/top.sv):Доб-ие обработки всего opcode

* Feat(pic/04/board/op):Доб-ие пикчи

* Ref(pic/06/board/op):Обн-ие названий

* Feat(06/board/md):Обн-ие md

* Feat(06/board/md):Доб-ие инфы про инстр с памятью

* Ref(06/board/md):Изм-ие формулирвки для PC
This commit is contained in:
BROsandr
2024-03-20 14:40:05 +03:00
committed by GitHub
parent 6b51e7c977
commit 28cda20170
5 changed files with 384 additions and 157 deletions

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 250 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 1.7 MiB

View File

@@ -1,5 +1,46 @@
# Проверка работы riscv_unit на ПЛИС
Если вы не понимаете, что лежит в этой папке, или если надо вспомнить, как прошить ПЛИС, можно воспользоваться [`этой инструкцией`](../../../Vivado%20Basics/Program%20nexys%20a7.md)
После того, как вы проверили на моделировании дизайн, вам необходимо проверить его работу на прототипе в ПЛИС.
Файл [`nexys_riscv_unit.sv`](nexys_riscv_unit.sv), который нужно запускать с [`демонстрационным файлом инструкций`](../program.mem), является демонстрацией работы вашего ядра, каждое нажатие на BTND формирует тактовый импульс, впоследствии пошагово переходя по инструкциям, которые в свою очередь отображаются на семисегментных индикаторах.
Инструкция по реализации прототипа описана [здесь](../../../Vivado%20Basics/How%20to%20program%20an%20fpga%20board.md).
На _рис. 1_ представлена схема прототипа в ПЛИС.
![../../../.pic/Labs/board%20files/nexys_riscv_unit_structure.drawio.svg](../../../.pic/Labs/board%20files/nexys_riscv_unit_structure.drawio.svg)
_Рисунок 1. Структурная схема модуля `nexys_riscv_unit`._
Прототип позволяет потактово исполнять программу, прошитую в память инструкций. Также прототип отображает операцию исполняемую в данный момент.
> [!NOTE]
> Объект модуля `riscv_core` в модуле `riscv_unit` **должен** называться `core`. Т.е. строка создания сущности модуля должна выглядеть следующим образом: `riscv_core core(...)`.
## Описание используемой периферии
- ### Кнопки
- `BTND` — при нажатии создает тактовый импульс, поступающий на порт тактирования `clk_i` модуля дизайна. Стоит помнить то, что инструкции, работающие с внешней памятью, требуют несколько тактов для своего выполнения.
- `CPU_RESET` — соединен со входом `rst_i` модуля дизайна. Поскольку в модуле `riscv_unit` используется синхронный сброс (то есть сигнал сброса учитывается только во время восходящего фронта тактового сигнала), то для сброса модуля `riscv_unit` и вложенных в него модулей необходимо при зажатой кнопке сброса еще нажать кнопку тактирования.
- ### Семисегментные индикаторы
Семисегментные индикаторы разбиты на 2 блока (см. _рис. 1_):
- `PC` — отображают в виде шестнадцатеричного числа младшие 16 бит программного счетчика, которые вычисляются на основе выхода `instr_addr_o` модуля процессорного ядра.
- `operation` — отображают [операцию](#операции-отображаемые-прототипом), исполняемую процессором на текущем такте.
## Операции, отображаемые прототипом
Прототип определяет тип операции по младшим 7 битам инструкции.
Если тип операции является легальным в рамках процессорного устройства, реализуемого на лабораторных работах, то отображается соответствующий опкод. Опкоды описаны в [riscv_pkg.sv](../../05.%20Main%20decoder/riscv_pkg.sv). Если определенный прототипом тип операции является нелегальным, то на семисегментных индикаторах отображается `ILL` (от **ill**egal).
Соответствие операции ее отображению на семисегментных индикаторах представлено на _рис. 2_:
!['../../../.pic/Labs/board%20files/nexys_riscv_unit_operations.drawio.svg'](../../../.pic/Labs/board%20files/nexys_riscv_unit_operations.drawio.svg)
_Рисунок 2. Соответствие операции ее отображению на семисегментных индикаторах._
## Демонстрационная программа
В качестве демонстрационной программы, предлагается использовать [program.mem](../program.mem). Описание ее работы можно прочитать в разделе [#задание](../README.md#задание).

View File

@@ -4,8 +4,8 @@
## - rename the used ports (in each line, after get_ports) according to the top level signal names in the project
# Clock signal
set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports { CLK100 }]; #IO_L12P_T1_MRCC_35 Sch=clk100mhz
create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {CLK100}];
set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports { clk_i }]; #IO_L12P_T1_MRCC_35 Sch=clk100mhz
create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {clk_i}];
#Switches
@@ -53,30 +53,30 @@ create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {CL
#set_property -dict { PACKAGE_PIN N16 IOSTANDARD LVCMOS33 } [get_ports { LED17_R }]; #IO_L11N_T1_SRCC_14 Sch=led17_r
##7 segment display
set_property -dict { PACKAGE_PIN T10 IOSTANDARD LVCMOS33 } [get_ports { CA }]; #IO_L24N_T3_A00_D16_14 Sch=ca
set_property -dict { PACKAGE_PIN R10 IOSTANDARD LVCMOS33 } [get_ports { CB }]; #IO_25_14 Sch=cb
set_property -dict { PACKAGE_PIN K16 IOSTANDARD LVCMOS33 } [get_ports { CC }]; #IO_25_15 Sch=cc
set_property -dict { PACKAGE_PIN K13 IOSTANDARD LVCMOS33 } [get_ports { CD }]; #IO_L17P_T2_A26_15 Sch=cd
set_property -dict { PACKAGE_PIN P15 IOSTANDARD LVCMOS33 } [get_ports { CE }]; #IO_L13P_T2_MRCC_14 Sch=ce
set_property -dict { PACKAGE_PIN T11 IOSTANDARD LVCMOS33 } [get_ports { CF }]; #IO_L19P_T3_A10_D26_14 Sch=cf
set_property -dict { PACKAGE_PIN L18 IOSTANDARD LVCMOS33 } [get_ports { CG }]; #IO_L4P_T0_D04_14 Sch=cg
#set_property -dict { PACKAGE_PIN H15 IOSTANDARD LVCMOS33 } [get_ports { DP }]; #IO_L19N_T3_A21_VREF_15 Sch=dp
set_property -dict { PACKAGE_PIN J17 IOSTANDARD LVCMOS33 } [get_ports { AN[0] }]; #IO_L23P_T3_FOE_B_15 Sch=an[0]
set_property -dict { PACKAGE_PIN J18 IOSTANDARD LVCMOS33 } [get_ports { AN[1] }]; #IO_L23N_T3_FWE_B_15 Sch=an[1]
set_property -dict { PACKAGE_PIN T9 IOSTANDARD LVCMOS33 } [get_ports { AN[2] }]; #IO_L24P_T3_A01_D17_14 Sch=an[2]
set_property -dict { PACKAGE_PIN J14 IOSTANDARD LVCMOS33 } [get_ports { AN[3] }]; #IO_L19P_T3_A22_15 Sch=an[3]
set_property -dict { PACKAGE_PIN P14 IOSTANDARD LVCMOS33 } [get_ports { AN[4] }]; #IO_L8N_T1_D12_14 Sch=an[4]
set_property -dict { PACKAGE_PIN T14 IOSTANDARD LVCMOS33 } [get_ports { AN[5] }]; #IO_L14P_T2_SRCC_14 Sch=an[5]
set_property -dict { PACKAGE_PIN K2 IOSTANDARD LVCMOS33 } [get_ports { AN[6] }]; #IO_L23P_T3_35 Sch=an[6]
set_property -dict { PACKAGE_PIN U13 IOSTANDARD LVCMOS33 } [get_ports { AN[7] }]; #IO_L23N_T3_A02_D18_14 Sch=an[7]
set_property -dict { PACKAGE_PIN T10 IOSTANDARD LVCMOS33 } [get_ports { ca_o }]; #IO_L24N_T3_A00_D16_14 Sch=ca
set_property -dict { PACKAGE_PIN R10 IOSTANDARD LVCMOS33 } [get_ports { cb_o }]; #IO_25_14 Sch=cb
set_property -dict { PACKAGE_PIN K16 IOSTANDARD LVCMOS33 } [get_ports { cc_o }]; #IO_25_15 Sch=cc
set_property -dict { PACKAGE_PIN K13 IOSTANDARD LVCMOS33 } [get_ports { cd_o }]; #IO_L17P_T2_A26_15 Sch=cd
set_property -dict { PACKAGE_PIN P15 IOSTANDARD LVCMOS33 } [get_ports { ce_o }]; #IO_L13P_T2_MRCC_14 Sch=ce
set_property -dict { PACKAGE_PIN T11 IOSTANDARD LVCMOS33 } [get_ports { cf_o }]; #IO_L19P_T3_A10_D26_14 Sch=cf
set_property -dict { PACKAGE_PIN L18 IOSTANDARD LVCMOS33 } [get_ports { cg_o }]; #IO_L4P_T0_D04_14 Sch=cg
set_property -dict { PACKAGE_PIN H15 IOSTANDARD LVCMOS33 } [get_ports { dp_o }]; #IO_L19N_T3_A21_VREF_15 Sch=dp
set_property -dict { PACKAGE_PIN J17 IOSTANDARD LVCMOS33 } [get_ports { an_o[0] }]; #IO_L23P_T3_FOE_B_15 Sch=an[0]
set_property -dict { PACKAGE_PIN J18 IOSTANDARD LVCMOS33 } [get_ports { an_o[1] }]; #IO_L23N_T3_FWE_B_15 Sch=an[1]
set_property -dict { PACKAGE_PIN T9 IOSTANDARD LVCMOS33 } [get_ports { an_o[2] }]; #IO_L24P_T3_A01_D17_14 Sch=an[2]
set_property -dict { PACKAGE_PIN J14 IOSTANDARD LVCMOS33 } [get_ports { an_o[3] }]; #IO_L19P_T3_A22_15 Sch=an[3]
set_property -dict { PACKAGE_PIN P14 IOSTANDARD LVCMOS33 } [get_ports { an_o[4] }]; #IO_L8N_T1_D12_14 Sch=an[4]
set_property -dict { PACKAGE_PIN T14 IOSTANDARD LVCMOS33 } [get_ports { an_o[5] }]; #IO_L14P_T2_SRCC_14 Sch=an[5]
set_property -dict { PACKAGE_PIN K2 IOSTANDARD LVCMOS33 } [get_ports { an_o[6] }]; #IO_L23P_T3_35 Sch=an[6]
set_property -dict { PACKAGE_PIN U13 IOSTANDARD LVCMOS33 } [get_ports { an_o[7] }]; #IO_L23N_T3_A02_D18_14 Sch=an[7]
##Buttons
set_property -dict { PACKAGE_PIN C12 IOSTANDARD LVCMOS33 } [get_ports { resetn }]; #IO_L3P_T0_DQS_AD1P_15 Sch=cpu_resetn
set_property -dict { PACKAGE_PIN C12 IOSTANDARD LVCMOS33 } [get_ports { arstn_i }]; #IO_L3P_T0_DQS_AD1P_15 Sch=cpu_resetn
#set_property -dict { PACKAGE_PIN N17 IOSTANDARD LVCMOS33 } [get_ports { BTNC }]; #IO_L9P_T1_DQS_14 Sch=btnc
#set_property -dict { PACKAGE_PIN M18 IOSTANDARD LVCMOS33 } [get_ports { BTNU }]; #IO_L4N_T0_D05_14 Sch=btnu
#set_property -dict { PACKAGE_PIN P17 IOSTANDARD LVCMOS33 } [get_ports { BTNL }]; #IO_L12P_T1_MRCC_14 Sch=btnl
#set_property -dict { PACKAGE_PIN M17 IOSTANDARD LVCMOS33 } [get_ports { BTNR }]; #IO_L10N_T1_D15_14 Sch=btnr
set_property -dict { PACKAGE_PIN P18 IOSTANDARD LVCMOS33 } [get_ports { BTND }]; #IO_L9N_T1_DQS_D13_14 Sch=btnd
set_property -dict { PACKAGE_PIN P18 IOSTANDARD LVCMOS33 } [get_ports { btnd_i }]; #IO_L9N_T1_DQS_D13_14 Sch=btnd
##Pmod Headers
@@ -208,4 +208,4 @@ set_property -dict { PACKAGE_PIN P18 IOSTANDARD LVCMOS33 } [get_ports { BTND }
#set_property -dict { PACKAGE_PIN K18 IOSTANDARD LVCMOS33 } [get_ports { QSPI_DQ[1] }]; #IO_L1N_T0_D01_DIN_14 Sch=qspi_dq[1]
#set_property -dict { PACKAGE_PIN L14 IOSTANDARD LVCMOS33 } [get_ports { QSPI_DQ[2] }]; #IO_L2P_T0_D02_14 Sch=qspi_dq[2]
#set_property -dict { PACKAGE_PIN M14 IOSTANDARD LVCMOS33 } [get_ports { QSPI_DQ[3] }]; #IO_L2N_T0_D03_14 Sch=qspi_dq[3]
#set_property -dict { PACKAGE_PIN L13 IOSTANDARD LVCMOS33 } [get_ports { QSPI_CSN }]; #IO_L6P_T0_FCS_B_14 Sch=qspi_csn
#set_property -dict { PACKAGE_PIN L13 IOSTANDARD LVCMOS33 } [get_ports { QSPI_CSN }]; #IO_L6P_T0_FCS_B_14 Sch=qspi_csn

View File

@@ -2,155 +2,333 @@
* Project Name : Architectures of Processor Systems (APS) lab work
* Organization : National Research University of Electronic Technology (MIET)
* Department : Institute of Microdevices and Control Systems
* Author(s) : Nikita Bulavin
* Email(s) : nekkit6@edu.miet.ru
* Author(s) : Alexander Kharlamov
* Email(s) : sasha_xarlamov@org.miet.ru
See https://github.com/MPSU/APS/blob/master/LICENSE file for licensing details.
* ------------------------------------------------------------------------------
*/
typedef enum {
INSTR_ALU , // branch and computational
INSTR_LI , // const load
INSTR_IN , // periphery load
INSTR_JUMP ,
INSTR_NOP // ws == 3
} Instruction_type;
typedef enum {
CH_0 = 0,
CH_1,
CH_2,
CH_3,
CH_4,
CH_5,
CH_6,
CH_7,
CH_8,
CH_9,
CH_A,
CH_b,
CH_c,
CH_d,
CH_E,
CH_F,
CH_G,
CH_L,
CH_n,
CH_o,
CH_r,
CH_S,
CH_t,
CH_u,
CH_X,
CH_P,
CH_J,
CH_q,
CH_i,
CH_m,
CH_y,
CH_h,
CH_SPACE
} Char;
typedef struct {
logic ca;
logic cb;
logic cc;
logic cd;
logic ce;
logic cf;
logic cg;
logic dp;
} Semseg;
module nexys_riscv_unit(
input CLK100,
input resetn,
input BTND,
output CA, CB, CC, CD, CE, CF, CG,
output [7:0] AN
);
input logic clk_i,
input logic arstn_i,
input logic btnd_i,
output logic ca_o,
output logic cb_o,
output logic cc_o,
output logic cd_o,
output logic ce_o,
output logic cf_o,
output logic cg_o,
output logic dp_o,
output logic [ 7:0] an_o
);
riscv_unit unit(
.clk_i(btn),
.rst_i(!resetn)
);
logic btnd_sync;
sync sync (
.clk_i ,
.data_i (btnd_i ),
.data_o (btnd_sync)
);
logic btnd_debounce;
debounce debounce (
.clk_i ,
.arstn_i (1'b1 ),
.data_i (btnd_sync ),
.data_o (btnd_debounce)
);
logic bufg_clk;
BUFG dut_bufg(
.I (btnd_debounce),
.O (bufg_clk )
);
wire [31:0] instr_addr;
wire [31:0] instr;
reg btn;
riscv_unit unit(
.clk_i (bufg_clk),
.rst_i (!arstn_i)
);
logic [31:0] instr_addr;
logic [31:0] instr;
assign instr_addr = unit.core.instr_addr_o;
assign instr = unit.core.instr_i;
localparam pwm = 1000;
reg [9:0] counter;
reg [7:0] semseg;
reg [7:0] ANreg;
reg CAr, CBr, CCr, CDr, CEr, CFr, CGr;
import alu_opcodes_pkg::*;
assign AN[7:0] = ANreg[7:0];
assign {CA, CB, CC, CD, CE, CF, CG} = {CAr, CBr, CCr, CDr, CEr, CFr, CGr};
logic illegal_instr;
logic [6:0] opcode;
assign opcode = instr[6:0];
always @(posedge CLK100) begin
if (!resetn) begin
counter <= 'b0;
ANreg[7:0] <= 8'b11111111;
{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111111;
btn <= BTND;
end
else begin
btn <= BTND;
if (counter < pwm) counter = counter + 'b1;
else begin
counter = 'b0;
ANreg[1] <= ANreg[0];
ANreg[2] <= ANreg[1];
ANreg[3] <= ANreg[2];
ANreg[4] <= ANreg[3];
ANreg[5] <= ANreg[4];
ANreg[6] <= ANreg[5];
ANreg[7] <= ANreg[6];
ANreg[0] <= !(ANreg[6:0] == 7'b1111111);
end
if(|(~ANreg[5:4])) begin
case (1'b0)
ANreg[4]: semseg <= instr_addr[3:0];
ANreg[5]: semseg <= instr_addr[7:4];
endcase
case (semseg)
4'h0: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0000001;
4'h1: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1001111;
4'h2: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0010010;
4'h3: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0000110;
4'h4: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1001100;
4'h5: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0100100;
4'h6: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0100000;
4'h7: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0001111;
4'h8: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0000000;
4'h9: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0000100;
4'hA: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0001000;
4'hB: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1100000;
4'hC: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0110001;
4'hD: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1000010;
4'hE: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0110000;
4'hF: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0111000;
default: {CAr,CBr,CCr,CDr, CEr, CFr, CGr} <= 7'b0111111;
endcase
end else begin
case (1'b0)
ANreg[7]: begin
{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0011000;
end
ANreg[6]: begin
{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0110001;
end
ANreg[3]: begin
case(instr[6:2])
5'b01101:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111111; //LUI -
5'b00101:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0001000; //AUIP A
5'b11011:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111111; //JAL -
5'b11001:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1000111; //JALR J
5'b11000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1100000; //brch b
5'b00000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1110001; //LOAd L
5'b01000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0100100; //STOr S
5'b00100:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0000001; //OPIM O
5'b01100:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111111; //OP -
default: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111001; //ILLE I
endcase
end
ANreg[2]: begin
case(instr[6:2])
5'b01101:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1110001; //LUI L
5'b00101:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1000001; //AUIP U
5'b11011:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1000111; //JAL J
5'b11001:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0001000; //JALR A
5'b11000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111010; //brch r
5'b00000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0000001; //LOAd O
5'b01000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1110000; //StOr t
5'b00100:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0011000; //OPIM P
5'b01100:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111111; //OP -
default: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1110001; //ILLE L
endcase
end
ANreg[1]: begin
case(instr[6:2])
5'b01101:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1000001; //LUI U
5'b00101:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111001; //AUIP I
5'b11011:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0001000; //JAL A
5'b11001:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1110001; //JALR L
5'b11000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1110010; //brch c
5'b00000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0001000; //LOAd A
5'b01000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0000001; //STOr O
5'b00100:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111001; //OPIM I
5'b01100:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0000001; //OP O
default: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1110001; //ILLE L
endcase
end
ANreg[0]: begin
case(instr[6:2])
5'b01101:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111001; //LUI I
5'b00101:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0011000; //AUIP P
5'b11011:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1110001; //JAL L
5'b11001:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111010; //JALr r
5'b11000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1101000; //brch h
5'b00000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1000010; //LOAd d
5'b01000:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b1111010; //STOr r
5'b00100:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0101010; //OPIM M
5'b01100:{CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0011000; //OP P
default: {CAr, CBr, CCr, CDr, CEr, CFr, CGr} <= 7'b0110000; //ILLE E
endcase
end
endcase
end
end
Char op_chars[0:3];
import riscv_pkg::*;
always_comb begin
op_chars = '{4{CH_SPACE}};
case (opcode)
{LOAD_OPCODE , 2'b11}: op_chars = '{CH_L, CH_o, CH_A, CH_d};
{MISC_MEM_OPCODE, 2'b11}: op_chars = '{CH_m, CH_i, CH_S, CH_c};
{OP_IMM_OPCODE , 2'b11}: op_chars = '{CH_o, CH_P, CH_i, CH_m};
{AUIPC_OPCODE , 2'b11}: op_chars = '{CH_A, CH_u, CH_i, CH_P};
{STORE_OPCODE , 2'b11}: op_chars = '{CH_S, CH_t, CH_o, CH_r};
{OP_OPCODE , 2'b11}: op_chars[0:1] = '{CH_o, CH_P};
{LUI_OPCODE , 2'b11}: op_chars[0:2] = '{CH_L, CH_u, CH_i};
{BRANCH_OPCODE , 2'b11}: op_chars = '{CH_b, CH_r, CH_c, CH_h};
{JALR_OPCODE , 2'b11}: op_chars = '{CH_J, CH_A, CH_L, CH_r};
{JAL_OPCODE , 2'b11}: op_chars[0:2] = '{CH_J, CH_A, CH_L};
{SYSTEM_OPCODE , 2'b11}: op_chars[0:2] = '{CH_S, CH_y, CH_S};
default : op_chars[0:2] = '{CH_i, CH_L, CH_L};
endcase
end
Char all_chars[0:7];
assign all_chars[0:3] = {
Char'(instr_addr[15:12]),
Char'(instr_addr[11: 8]),
Char'(instr_addr[ 7: 4]),
Char'(instr_addr[ 3: 0])
};
assign all_chars[4:7] = op_chars;
Char current_char;
logic [7:0] an;
semseg_one2many #(
.DATA_T (Char)
) semseg_one2many (
.clk100m_i (clk_i ),
.arstn_i (arstn_i ),
.all_semsegs_i (all_chars ),
.current_semseg_o (current_char),
.an_o (an )
);
Semseg current_semseg;
char2semseg char2semseg (
.char_i (current_char ),
.semseg_o (current_semseg)
);
assign ca_o = current_semseg.ca;
assign cb_o = current_semseg.cb;
assign cc_o = current_semseg.cc;
assign cd_o = current_semseg.cd;
assign ce_o = current_semseg.ce;
assign cf_o = current_semseg.cf;
assign cg_o = current_semseg.cg;
assign dp_o = current_semseg.dp;
assign an_o = an;
endmodule
module char2semseg #(
parameter bit HEX_ONLY = 1'b0
) (
input Char char_i,
output Semseg semseg_o
);
localparam bit [6:0] BLANK = '1;
logic [6:0] semseg;
always_comb begin
case (char_i)
CH_0 : semseg = ~7'h3F;
CH_1 : semseg = ~7'h06;
CH_2 : semseg = ~7'h5B;
CH_3 : semseg = ~7'h4F;
CH_4 : semseg = ~7'h66;
CH_5 : semseg = ~7'h6D;
CH_6 : semseg = ~7'h7D;
CH_7 : semseg = ~7'h07;
CH_8 : semseg = ~7'h7F;
CH_9 : semseg = ~7'h6F;
CH_A : semseg = ~7'h5F;
CH_b : semseg = ~7'h7C;
CH_c : semseg = ~7'h58;
CH_d : semseg = ~7'h5E;
CH_E : semseg = ~7'h79;
CH_F : semseg = ~7'h71;
CH_G : semseg = ~7'h3D;
CH_L : semseg = ~7'h38;
CH_n : semseg = ~7'h54;
CH_o : semseg = ~7'h5C;
CH_r : semseg = ~7'h50;
CH_S : semseg = ~7'h64;
CH_t : semseg = ~7'h78;
CH_u : semseg = ~7'h1C;
CH_X : semseg = ~7'h76;
CH_P : semseg = ~7'h73;
CH_J : semseg = ~7'h1E;
CH_q : semseg = ~7'h67;
CH_i : semseg = ~7'h30;
CH_m : semseg = ~7'h77;
CH_y : semseg = ~7'h6E;
CH_h : semseg = ~7'h74;
default : semseg = BLANK;
endcase
end
assign semseg_o.ca = semseg[0];
assign semseg_o.cb = semseg[1];
assign semseg_o.cc = semseg[2];
assign semseg_o.cd = semseg[3];
assign semseg_o.ce = semseg[4];
assign semseg_o.cf = semseg[5];
assign semseg_o.cg = semseg[6];
assign semseg_o.dp = 1'b1;
endmodule
module semseg_one2many #(
parameter int unsigned SEMSEGS_NUM = 8,
parameter type DATA_T
) (
input DATA_T all_semsegs_i[0:SEMSEGS_NUM-1],
input logic clk100m_i,
input logic arstn_i,
output DATA_T current_semseg_o,
output logic [7:0] an_o
);
logic clk_i;
assign clk_i = clk100m_i;
localparam int COUNTER_WIDTH = 10;
logic [COUNTER_WIDTH-1:0] counter_next;
logic [COUNTER_WIDTH-1:0] counter_ff;
assign counter_next = counter_ff + COUNTER_WIDTH'('b1);
always_ff @(posedge clk_i or negedge arstn_i) begin
if (!arstn_i) counter_ff <= '0;
else counter_ff <= counter_next;
end
logic [7:0] an_ff;
logic [7:0] an_next;
logic an_en;
assign an_next = {an_ff[$left(an_ff)-1:0], an_ff[$left(an_ff)]};
assign an_en = ~|counter_ff;
always_ff @(posedge clk_i or negedge arstn_i) begin
if (!arstn_i) an_ff <= ~8'b1;
else if (an_en) an_ff <= an_next;
end
DATA_T current_semseg;
always_comb begin
unique case (1'b0)
an_ff[0]: current_semseg = all_semsegs_i[7];
an_ff[1]: current_semseg = all_semsegs_i[6];
an_ff[2]: current_semseg = all_semsegs_i[5];
an_ff[3]: current_semseg = all_semsegs_i[4];
an_ff[4]: current_semseg = all_semsegs_i[3];
an_ff[5]: current_semseg = all_semsegs_i[2];
an_ff[6]: current_semseg = all_semsegs_i[1];
an_ff[7]: current_semseg = all_semsegs_i[0];
endcase
end
assign current_semseg_o = current_semseg;
assign an_o = an_ff;
endmodule
module debounce #(
parameter int unsigned MAX_COUNT = 10000
) (
input logic clk_i,
input logic arstn_i,
input logic data_i,
output logic data_o
);
localparam int COUNTER_WIDTH = $clog2(MAX_COUNT);
logic [COUNTER_WIDTH-1:0] counter_next;
logic [COUNTER_WIDTH-1:0] counter_ff;
assign counter_next = (data_o != data_i) ? counter_ff - COUNTER_WIDTH'('b1) :
COUNTER_WIDTH'(MAX_COUNT);
always_ff @(posedge clk_i or negedge arstn_i) begin
if (!arstn_i) counter_ff <= COUNTER_WIDTH'(MAX_COUNT);
else counter_ff <= counter_next;
end
always_ff @(posedge clk_i or negedge arstn_i) begin
if (!arstn_i) data_o <= '0;
else if (~|counter_ff) data_o <= data_i;
end
endmodule
module sync #(
parameter int unsigned SYNC_STAGES = 3
) (
input logic clk_i,
input logic data_i,
output logic data_o
);
logic [SYNC_STAGES-1:0] sync_buffer_ff;
logic [SYNC_STAGES-1:0] sync_buffer_next;
assign sync_buffer_next = {sync_buffer_ff[$left(sync_buffer_ff)-1:0], data_i};
always_ff @(posedge clk_i) begin
sync_buffer_ff <= sync_buffer_next;
end
assign data_o = sync_buffer_ff[$left(sync_buffer_ff)];
endmodule