ЛР12. Уточнение формулировок в методичке

This commit is contained in:
Andrei Solodovnikov
2023-11-16 17:05:00 +03:00
parent 8104d4ddec
commit b9dfcd2201

View File

@@ -29,13 +29,13 @@
Помимо процессора и памяти, третьим ключевым элементом вычислительной системы является система ввода/вывода, обеспечивающая обмен информации между ядром вычислительной машины и периферийными устройствами. Помимо процессора и памяти, третьим ключевым элементом вычислительной системы является система ввода/вывода, обеспечивающая обмен информации между ядром вычислительной машины и периферийными устройствами.
Любое периферийное устройство, со стороны вычислительной машины, представляется набором ячеек памяти (регистров). С помощью чтения и записи этих регистров происходит обмен информации с периферийным устройством, и управление им. Например, датчик температуры может быть реализован самыми разными способами, но для процессора он в любом случае ячейка памяти, из которой он считывает число температуру. Любое периферийное устройство со стороны вычислительной машины видится как набор ячеек памяти (регистров). С помощью чтения и записи этих регистров происходит обмен информации с периферийным устройством, и управление им. Например, датчик температуры может быть реализован самыми разными способами, но для процессора он в любом случае ячейка памяти, из которой он считывает число температуру.
Система ввода/вывода может быть организована одним из двух способов: с **выделенным адресным пространством** устройств ввода/вывода, или с **совместным адресным пространством**. В первом случае система ввода/вывода имеет отдельную шину для подключения к процессору (и отдельные инструкции для обращения к периферии), во втором шина для памяти и системы ввода/вывода общая (а обращение к периферии осуществляется теми же инструкциями, что и обращение к памяти). Система ввода/вывода может быть организована одним из двух способов: с **выделенным адресным пространством** устройств ввода/вывода, или с **совместным адресным пространством**. В первом случае система ввода/вывода имеет отдельную шину для подключения к процессору (и отдельные инструкции для обращения к периферии), во втором шина для памяти и системы ввода/вывода общая (а обращение к периферии осуществляется теми же инструкциями, что и обращение к памяти).
### Адресное пространство ### Адресное пространство
Архитектура RISC-V подразумевает использование совместного адресного пространства, это значит, что в лабораторной работе будет использована единая шина для подключения памяти и регистров управления периферийными устройствами. При обращении по одному диапазону адресов процессор будет попадать в память, при обращении по другим взаимодействовать с регистрами управления/статуса периферийного устройства. Например, можно разделить 32-битное адресное пространство на 256 частей, отдав старшие 8 бит адреса под указание конкретного периферийного устройства. Тогда каждое из периферийных устройств получит 24-битное адресное пространство (16 MiB). Допустим, мы распределили эти части адресного пространства в следующем порядке (от младшего диапазона адресов к старшему): Архитектура RISC-V подразумевает использование совместного адресного пространства это значит, что в лабораторной работе будет использована единая шина для подключения памяти и регистров управления периферийными устройствами. При обращении по одному диапазону адресов процессор будет попадать в память, при обращении по другим взаимодействовать с регистрами управления/статуса периферийного устройства. Например, можно разделить 32-битное адресное пространство на 256 частей, отдав старшие 8 бит адреса под указание конкретного периферийного устройства. Тогда каждое из периферийных устройств получит 24-битное адресное пространство (16 MiB). Допустим, мы распределили эти части адресного пространства в следующем порядке (от младшего диапазона адресов к старшему):
0. Память данных 0. Память данных
1. Переключатели 1. Переключатели
@@ -70,7 +70,7 @@ _Рисунок 1. Итоговая структура процессорной
### Дополнительные правки модуля riscv_unit ### Дополнительные правки модуля riscv_unit
Ранее, для того чтобы ваши модули могли работать в ПЛИС, вам предоставлялся специальный модуль верхнего уровня, который выполнял всю работу по связи с периферией через входы и выходы ПЛИС. Поскольку в текущей лабораторной вы завершаете свою процессорную систему, она сама должна оказаться модулем верхнего уровня, а значит здесь вы должны и выполнить все подключение к периферии. Ранее, для того чтобы ваши модули могли работать в ПЛИС, вам предоставлялся специальный модуль верхнего уровня, который выполнял всю работу по связи с периферией через входы и выходы ПЛИС. Поскольку в текущей лабораторной вы завершаете свою процессорную систему, она сама должна оказаться модулем верхнего уровня, а значит здесь вы должны и выполнить всё подключение к периферии.
Для этого необходимо добавить в модуль `riscv_unit` дополнительные входы и выходы, которые подключены посредством файла ограничений ([nexys_a7_100t.xdc](nexys_a7_100t.xdc)) к входам и выходам ПЛИС. Для этого необходимо добавить в модуль `riscv_unit` дополнительные входы и выходы, которые подключены посредством файла ограничений ([nexys_a7_100t.xdc](nexys_a7_100t.xdc)) к входам и выходам ПЛИС.
@@ -93,7 +93,7 @@ module riscv_unit(
endmodule endmodule
``` ```
Эти порты подключены к одноименным портам ваших контроллеров периферии (речь идет только о реализуемых вами контроллерах, остальные порты должны остаться неподключенными). Эти порты нужно подключить к одноименным портам ваших контроллеров периферии (**речь идет только о реализуемых вами контроллерах, остальные порты должны остаться неподключенными**).
Обратите внимание на то, что изменился сигнал сброса (`resetn_i`). Буква `n` на конце означает, что сброс работает по уровню `0` (когда сигнал равен нулю — это сброс, когда единице — не сброс). Обратите внимание на то, что изменился сигнал сброса (`resetn_i`). Буква `n` на конце означает, что сброс работает по уровню `0` (когда сигнал равен нулю — это сброс, когда единице — не сброс).
@@ -115,11 +115,7 @@ sys_clk_rst_gen divider(.ex_clk_i(clk_i),.ex_areset_n_i(resetn_i),.div_i(10),.sy
## Задание ## Задание
В рамках данной лабораторной работы необходимо реализовать модули-контроллеры двух периферийных устройств, реализующих управление в соответствии с приведенной ниже картой памяти и встроить их в процессорную систему, используя используя [_рис. 1_](../../.pic/Labs/lab_12_periph/fig_01.drawio.png). На карте приведено шесть периферийных устройств, вам необходимо взять только два из них в зависимости от вашего варианта индивидуального задания (ИЗ) по следующему правилу: В рамках данной лабораторной работы необходимо реализовать модули-контроллеры двух периферийных устройств, реализующих управление в соответствии с приведенной ниже картой памяти и встроить их в процессорную систему, используя используя [_рис. 1_](../../.pic/Labs/lab_12_periph/fig_01.drawio.png). На карте приведено шесть периферийных устройств, вам необходимо взять только два из них. Какие именно — сообщит преподаватель.
1. Те кому достались варианты ИЗ 1-5 должны реализовать контроллеры переключателей и светодиодов.
2. Те кому достались варианты ИЗ 6-15 должны реализовать контроллеры клавиатуры PS/2 и семисегментных индикаторов.
3. Те кому достались варианты BP 16-29 должны реализовать контроллеры приемника и передатчика UART.
![Карта памяти](../../.pic/Labs/lab_12_periph/fig_02.png) ![Карта памяти](../../.pic/Labs/lab_12_periph/fig_02.png)
@@ -178,7 +174,7 @@ sys_clk_rst_gen divider(.ex_clk_i(clk_i),.ex_areset_n_i(resetn_i),.div_i(10),.sy
Обратите внимание на то, что **запрос на чтение** должен обрабатываться **синхронно** (выходные данные должны выдаваться по положительному фронту `clk_i`). Обратите внимание на то, что **запрос на чтение** должен обрабатываться **синхронно** (выходные данные должны выдаваться по положительному фронту `clk_i`).
При описании поддерживаемых режимов доступа по данному адресу используется интуитивно понятное обозначение: При описании поддерживаемых режимов доступа по данному адресу используется следующее обозначение:
* R — доступ **только на чтение**; * R — доступ **только на чтение**;
* W — доступ **только на запись**; * W — доступ **только на запись**;
@@ -259,9 +255,11 @@ endmodule
Данный модуль должен выводить на выходной сигнал `led_o` данные с регистра `led_val`. Запись и чтение регистра `led_val` осуществляется по адресу `0x00`. Запись любого значения, превышающего `2¹⁶-1` должна игнорироваться. Данный модуль должен выводить на выходной сигнал `led_o` данные с регистра `led_val`. Запись и чтение регистра `led_val` осуществляется по адресу `0x00`. Запись любого значения, превышающего `2¹⁶-1` должна игнорироваться.
Регистр `led_mode` отвечает за режим вывода данных на светодиоды. Когда этот регистр равен единице, светодиоды должны "моргать" выводимым значением. Под морганием подразумевается вывод значения из регистра `led_val` на выход `led_o` на одну секунду (загорится часть светодиодов, соответствующие которым биты шины `led_o` равны единице), после чего на одну секунду выход `led_o` необходимо подать нули. Запись и чтение регистра `led_mode` осуществляется по адресу `0x04`. Запись любого значения, отличного от `0` и `1` должна игнорироваться. Регистр `led_mode` отвечает за режим вывода данных на светодиоды. Когда этот регистр равен единице, светодиоды должны "моргать" выводимым значением. Под морганием подразумевается вывод значения из регистра `led_val` на выход `led_o` на одну секунду (загорится часть светодиодов, соответствующие которым биты шины `led_o` равны единице), после чего на одну секунду выход `led_o` необходимо подать нули. Запись и чтение регистра `led_mode` осуществляется по адресу `0x04`. Запись любого значения, отличного от `0` и `1` в регистр `led_mode` должна игнорироваться.
Отсчет времени можно реализовать простейшим счетчиком, каждый такт увеличивающимся на 1 и сбрасывающимся по достижении определенного значения, чтобы продолжить считать с нуля. Зная тактовую частоту, нетрудно определить до скольки должен считать счетчик. При тактовой частоте в 10 МГц происходит 10 миллионов тактов в секунду. Это означает, что при такой тактовой частоте через секунду счетчик будет равен `10⁷-1` (счет идет с нуля). Отсчет времени можно реализовать простейшим счетчиком, каждый такт увеличивающимся на 1 и сбрасывающимся по достижении определенного значения, чтобы продолжить считать с нуля. Зная тактовую частоту, нетрудно определить до скольки должен считать счетчик. При тактовой частоте в 10 МГц происходит 10 миллионов тактов в секунду. Это означает, что при такой тактовой частоте через секунду счетчик будет равен `10⁷-1` (счет идет с нуля). Тем не менее удобней будет считать не до `10⁷-1` (что было бы достаточно очевидным и тоже правильным решением), а до `2*10⁷-1`. В этом случае старший бит счетчика каждую секунду будет инвертировать свое значение, что может быть использовано при реализации логики "моргания".
Важно отметить, что счетчик должен работать только при `led_mode == 1`, в противном случае счетчик должен быть равен нулю.
Обратите внимание на то, что адрес `0x24` является адресом сброса. В случае записи по этому адресу единицы вы должны сбросить регистры `led_val`, `led_mode` и все вспомогательные регистры, которые вы создали. Для реализации сброса вы можете как создать отдельный регистр `led_rst`, в который будет происходить запись, а сам сброс будет происходить по появлению единицы в этом регистре (в этом случае необходимо не забыть сбрасывать и этот регистр), так и создать обычный провод, формирующий единицу в случае выполнения всех указанных условий (условий запроса на запись, адреса сброса и значения записываемых данных равному единице). Обратите внимание на то, что адрес `0x24` является адресом сброса. В случае записи по этому адресу единицы вы должны сбросить регистры `led_val`, `led_mode` и все вспомогательные регистры, которые вы создали. Для реализации сброса вы можете как создать отдельный регистр `led_rst`, в который будет происходить запись, а сам сброс будет происходить по появлению единицы в этом регистре (в этом случае необходимо не забыть сбрасывать и этот регистр), так и создать обычный провод, формирующий единицу в случае выполнения всех указанных условий (условий запроса на запись, адреса сброса и значения записываемых данных равному единице).
@@ -277,7 +275,7 @@ endmodule
Клавиатура [PS/2](https://ru.wikipedia.org/wiki/PS/2_(порт)) осуществляет передачу [скан-кодов](https://ru.wikipedia.org/wiki/Скан-код), нажатых на этой клавиатуре клавиш. Клавиатура [PS/2](https://ru.wikipedia.org/wiki/PS/2_(порт)) осуществляет передачу [скан-кодов](https://ru.wikipedia.org/wiki/Скан-код), нажатых на этой клавиатуре клавиш.
В рамках данной лабораторной работы вам будет предоставлен модуль, осуществляющий прием данных с клавиатуры. Вам нужно написать лишь модуль, осуществляющий контроль предоставленным модулем. У предоставленного модуля будет следующий прототип: В рамках данной лабораторной работы вам будет дан готовый модуль, осуществляющий прием данных с клавиатуры. От вас требуется написать лишь модуль, осуществляющий контроль предоставленным модулем. У готового модуля будет следующий прототип:
```SystemVerilog ```SystemVerilog
module PS2Receiver( module PS2Receiver(
@@ -323,7 +321,7 @@ endmodule
По каждому восходящему фронту сигнала `clk_i` вы должны проверять выход `keycode_valid_o` и если тот равен единице, записать значение с выхода `keycode_o` в регистр `scan_code`. При этом значение регистра `scan_code_is_unread` необходимо выставить в единицу. По каждому восходящему фронту сигнала `clk_i` вы должны проверять выход `keycode_valid_o` и если тот равен единице, записать значение с выхода `keycode_o` в регистр `scan_code`. При этом значение регистра `scan_code_is_unread` необходимо выставить в единицу.
В случае, если произошел запрос на чтение по адресу `0x00`, необходимо выставить на выход `read_data_o` значение регистра `scan_code` (дополнив старшие биты нулями), при этом значение регистра `scan_code_is_unread` необходимо обнулить. В случае, если произошел запрос на чтение по адресу `0x00`, необходимо выставить на выход `read_data_o` значение регистра `scan_code` (дополнив старшие биты нулями), при этом значение регистра `scan_code_is_unread` необходимо обнулить. В случае, если одновременно с запросом на чтение пришел сигнал `keycode_valid_o`, регистр `scan_code_is_unread` обнулять не нужно (в этот момент в регистр `scan_code` уже записывается новое, еще непрочитанное значение).
В случае запроса на чтение по адресу `0x04` необходимо вернуть значение регистра `scan_code_is_unread`. В случае запроса на чтение по адресу `0x04` необходимо вернуть значение регистра `scan_code_is_unread`.