mirror of
https://github.com/MPSU/APS.git
synced 2025-09-15 17:20:10 +00:00
WIP: APS cumulative update (#98)
* WIP: APS cumulative update * Update How FPGA works.md * Перенос раздела "Последовательностная логика" в отдельный док * Исправление картинки * Исправление оформления индексов * Переработка раздела Vivado Basics * Добавление картинки в руководство по созданию проекта * Исправление ссылок в анализе rtl * Обновление изображения в sequential logic * Исправление ссылок в bug hunting * Исправление ссылок * Рефактор руководства по прошивке ПЛИС * Mass update * Update fig_10 * Restore fig_02
This commit is contained in:
committed by
GitHub
parent
78bb01ef95
commit
a28002e681
@@ -7,7 +7,7 @@
|
||||
- [Псевдоинструкции](#псевдоинструкции)
|
||||
- [Основные типы команд](#основные-типы-команд)
|
||||
|
||||
> Большая часть данного документа в той или иной степени является переводом спецификации RISC-V[[1]](https://github.com/riscv/riscv-isa-manual), распространяемой по лицензии [CC-BY-4.0 ](https://creativecommons.org/licenses/by/4.0/).
|
||||
> Большая часть данного документа в той или иной степени является переводом спецификации RISC-V[[1]](https://github.com/riscv/riscv-isa-manual/releases/download/20240411/unpriv-isa-asciidoc.pdf), распространяемой по лицензии [CC-BY-4.0 ](https://creativecommons.org/licenses/by/4.0/).
|
||||
|
||||
## Краткая справка по RISC-V и RV32I
|
||||
|
||||
@@ -53,7 +53,7 @@ _Рисунок 1. Основные компоненты архитектуры
|
||||
|
||||
Как было сказано ранее, память имеет 32-битную шину адреса и имеет побайтовую адресацию. Это значит, что каждый из 2<sup>32</sup> байт памяти имеет свой уникальный адрес, по которому к нему можно обратиться, чтобы считать из него или записать в него новую информацию. Однако, инструкции кодируются 32-битными числами, а один байт это всего 8 бит, значит одна инструкция занимает сразу 4 адреса в памяти. Подразумевается, что из такой памяти можно читать одновременно из нескольких последовательных адресов, то есть устройство управления процессора сообщает памяти начальный адрес требуемой ячейки, и количество ячеек (одну, две или четыре), которые нужно прочитать или записать.
|
||||
|
||||
Одна ячейка называется `байт` — 8 бит. Две последовательные 8-битные ячейки называются `полуслово` — 16 бит. Четыре последовательные 8-битные ячейки называются `словом` — 32 бита. Например, если процессор собирается выполнить инструкцию, которая занимает четыре байта по адресам `0x00000007 — 0x00000004`, то он обращается к памяти, сообщая, что "нужны 4 байта начиная с адреса 0x00000004", взамен процессор получает 32-битное число — инструкцию, которая была слеплена из байт, хранящихся в памяти по адресам: 4, 5, 6 и 7, для данного примера. К памяти также можно обратиться за полусловом или за байтом. Предполагается реализация выровненного доступа к памяти, то есть адреса слов и полуслов должны быть кратны 4 и 2, соответственно.
|
||||
Одна ячейка памяти, содержащая 8 бит называется `байт`. Две последовательные 8-битные ячейки называются `полусловом` — 16 бит. Четыре последовательные 8-битные ячейки называются `словом` — 32 бита. Если процессор собирается выполнить инструкцию, которая занимает четыре байта по адресам `0x00000007 — 0x00000004`, то он обращается к памяти, сообщая, что "нужны 4 байта начиная с адреса `0x00000004`", в ответ процессор получает 32-битное число — инструкцию, которая была "склеена" из байт, хранящихся в памяти по адресам: 4, 5, 6 и 7, для данного примера. К памяти также можно обратиться за полусловом или за байтом. Предполагается реализация выровненного доступа к памяти, то есть адреса слов и полуслов всегда должны быть кратны 4 и 2, соответственно.
|
||||
|
||||
Аппаратное обеспечение компьютера «понимает» только нули и единицы, поэтому инструкции закодированы двоичными числами в формате, который называется машинным языком.
|
||||
|
||||
@@ -73,7 +73,7 @@ _Таблица 1. Инструкции набора RV32I с приведени
|
||||
|
||||
Обратите внимание на операции `slli`, `srli` и `srai` (операции сдвига на константную величину). У этих инструкций немного измененный формат кодирования **I\***. Формат кодирования **I** предоставляет 12-битную константу. Сдвиг 32-битного числа более, чем на 31 не имеет смысла. Для кодирования числа 31 требуется всего 5 бит. Выходит, что из 12 бит константы используется только 5 бит для операции сдвига, а оставшиеся 7 бит – не используются. А, главное (какое совпадение!), эти 7 бит находятся ровно в том же месте, где у других инструкций находится поле `Func7`. Поэтому, чтобы у инструкций `slli`, `srli` и `srai` использующих формат **I** не пропадала эта часть поля, к ней относятся как к полю `Func7`.
|
||||
|
||||
Таблица 2 является фрагментом [`оригинальной спецификации RISC-V`](https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf). Сверху приводятся 6 форматов кодирования инструкций: **R**, **I**, **S**, **B**, **U** и **J**, а ниже приводятся конкретные значения полей внутри инструкции. Под `rd` подразумевается 5-битный адрес регистра назначения, `rs1` и `rs2` - 5-битные адреса регистров источников, `imm` — константа, расположение и порядок битов которой указывается в квадратных скобках. Обратите внимание, что в разных форматах кодирования константы имеют различную разрядность, а их биты упакованы по-разному. Для знаковых операций константу предварительно знаково расширяют до 32 бит. Для беззнаковых расширяют нулями до 32 бит.
|
||||
Таблица 2 является фрагментом [`оригинальной спецификации RISC-V`](https://github.com/riscv/riscv-isa-manual/releases/download/20240411/unpriv-isa-asciidoc.pdf). Сверху приводятся 6 форматов кодирования инструкций: **R**, **I**, **S**, **B**, **U** и **J**, а ниже приводятся конкретные значения полей внутри инструкции. Под `rd` подразумевается 5-битный адрес регистра назначения, `rs1` и `rs2` - 5-битные адреса регистров источников, `imm` — константа, расположение и порядок битов которой указывается в квадратных скобках. Обратите внимание, что в разных форматах кодирования константы имеют различную разрядность, а их биты упакованы по-разному. Для знаковых операций константу предварительно знаково расширяют до 32 бит. Для беззнаковых расширяют нулями до 32 бит.
|
||||
|
||||

|
||||
|
||||
@@ -135,7 +135,7 @@ _Рисунок 5. Иллюстрация общих частей при код
|
||||
|
||||
Большинство инструкций целочисленных вычислений работают с 32-битными значениями, хранящимся в регистровом файле. Такие команды либо кодируются как операции `константа-регистр`, используя формат **I**-типа, либо как операции `регистр-регистр`, используя формат **R**-типа. В обоих случаях результат сохраняется в регистр `rd` . Ни одна инструкция целочисленных вычислений не вызывает арифметических исключений.
|
||||
|
||||
> Мы стали добавлять поддержку специального набора команд для проверок на переполнение целочисленных арифметических операций в основной набор команд, поскольку многие проверки на переполнение могут быть достаточно дешево реализованы в RISC-V с использованием инструкций ветвления. Проверка на переполнение для беззнакового сложения требует только одной дополнительной команды перехода после сложения:
|
||||
> Мы не стали добавлять поддержку специального набора команд для проверок на переполнение целочисленных арифметических операций в основной набор команд, поскольку многие проверки на переполнение могут быть достаточно дешево реализованы в RISC-V с использованием инструкций ветвления. Проверка на переполнение для беззнакового сложения требует только одной дополнительной команды перехода после сложения:
|
||||
>
|
||||
> ```asm
|
||||
> add t0, t1, t2
|
||||
@@ -145,8 +145,8 @@ _Рисунок 5. Иллюстрация общих частей при код
|
||||
> Для знакового сложения, если известен знак одного операнда, проверка на переполнение требует только одного ветвления после сложения:
|
||||
>
|
||||
> ```asm
|
||||
> addi t0, t1, +imm;
|
||||
> blt t0, t1, overflow.
|
||||
> addi t0, t1, + imm
|
||||
> blt t0, t1, overflow
|
||||
> ```
|
||||
>
|
||||
> Этот метод в общем случае подходит при сложении с непосредственным операндом. В остальных случаях при знаковом сложении требуются три дополнительные команды после сложения, использующих утверждение, что сумма должна быть меньше, чем один из операндов, тогда и только тогда, когда другой операнд отрицателен.
|
||||
@@ -166,9 +166,9 @@ _Рисунок 5. Иллюстрация общих частей при код
|
||||
|
||||
`ADDI` суммирует знакорасширенную 12-битную константу с регистром `rs1`. Арифметическое переполнение игнорируется, и результатом являются младшие 32 бита результата. Команда `ADDI rd, rs1, 0` используется для реализации ассемблерной псевдоинструкции `MV rd, rs1`.
|
||||
|
||||
`SLTI` (установить, если меньше чем константа) помещает значение 1 в регистр `rd`, если регистр `rs1` меньше, чем расширенное непосредственное значение, когда оба значения обрабатываются как знаковые числа, иначе в `rd` записывается 0. `SLTIU` аналогична, но сравнивает значения как беззнаковые числа (то есть непосредственное значение сначала расширяется до 32 бит, а затем обрабатывается как число без знака). Обратите внимание, что команда `SLTIU rd, rs1, 1` устанавливает `rd` в 1, если `rs1` равен нулю, в противном случае `rd` устанавливается в 0 (псевдоинструкция ассемблера `SEQZ rd, rs`).
|
||||
`SLTI` (установить, если меньше, чем константа) помещает значение 1 в регистр `rd`, если регистр `rs1` меньше, чем расширенное непосредственное значение, когда оба значения обрабатываются как знаковые числа, иначе в `rd` записывается 0. `SLTIU` аналогична, но сравнивает значения как беззнаковые числа (то есть непосредственное значение сначала расширяется до 32 бит, а затем обрабатывается как число без знака). Обратите внимание, что команда `SLTIU rd, rs1, 1` устанавливает `rd` в 1, если `rs1` равен нулю, в противном случае `rd` устанавливается в 0 (псевдоинструкция ассемблера `SEQZ rd, rs`).
|
||||
|
||||
Примечание: у студентов часто возникает вопрос: зачем вообще нужны инструкции вида `SLT`, если есть инструкции вида `BLT`? Например, они могут использоваться для вычисления сложных условий переходов. Один из примеров таких условий вы видели выше, в примере обработке результата сложения на переполнение. Кроме того, не смотря на ограниченность этих инструкций (все они проверяют только на **строго меньше**), мы можем добиться операции **строго больше** поменяв операнды местами, а если результат обоих операций даст `0` — значит операнды равны. Поскольку идея RISC архитектуры в том, чтобы переложить организацию всех этих ухищрений на компилятор, этих инструкций оказывается достаточно.
|
||||
Примечание: у студентов часто возникает вопрос: зачем вообще нужны инструкции вида `SLT`, если есть инструкции вида `BLT`? Например, они могут использоваться для вычисления сложных условий переходов. Один из примеров таких условий вы видели выше, в примере обработке результата сложения на переполнение. Кроме того, несмотря на ограниченность этих инструкций (все они проверяют только на **строго меньше**), мы можем добиться операции **строго больше** поменяв операнды местами, а если результат обоих операций даст `0` — значит операнды равны. Поскольку идея RISC архитектуры в том, чтобы переложить организацию всех этих ухищрений на компилятор, этих инструкций оказывается достаточно.
|
||||
|
||||
`ANDI`, `ORI`, `XORI` — это логические операции, которые выполняют побитовое И, ИЛИ и исключающее ИЛИ над регистром `rs1` и непосредственным 12-битным значением с знаковым расширением и помещают результат в `rd`. Обратите внимание, что команда `XORI rd, rs, -1` выполняет побитовую логическую инверсию значения регистра `rs1` (псевдоинструкция `NOT rd, rs`).
|
||||
|
||||
|
Reference in New Issue
Block a user