mirror of
https://github.com/MPSU/APS.git
synced 2025-09-16 01:30:10 +00:00
Переработка лабораторных работ, связанных с памятью (#89)
* Переработка лабораторных работ, связанных с памятью Существенно переработаны ЛР3 и ЛР7: Из ЛР3 убрано задание реализовать память данных. Эта память использовалась только студентами ИВТ и только в рамках одной лабы. В итоге использовалась готовая память, и ничего не мешает использовать ее с самого начала. Задание по реализации памяти инструкций также претерпело изменения. Теперь код памяти инструкций предоставляется сразу. Это объясняется тем, что код модуля состоит в общем-то из 4х строк, на которые тратится слишком много времени (с учетом добавления тестбенча и проверок). Кроме того, использование готового кода позволяет дать модуль чуть посложнее (с параметризацией размера). По итогу правок, третья лабораторная работа превращается чисто в лабораторную по написанию регистрового файла, что должно положительно сказаться на кривой сложности лаб. После второй лабы происходит слишком резкий скачок в объемах работы. Соответственно, в связи с тем, что память данных больше не делается на третьей лабе, дополнительная ЛР по памяти данных с byte enable необходимо перенести до реализации тракта данных. * ЛР3, 5, 6. Правки из ревью * ЛР7. Добавление иллюстраций
This commit is contained in:
committed by
GitHub
parent
06dc07c03f
commit
85883858ac
122
Labs/06. Main memory/README.md
Normal file
122
Labs/06. Main memory/README.md
Normal file
@@ -0,0 +1,122 @@
|
||||
# Лабораторная работа 6 "Основная память"
|
||||
|
||||
Процессор CYBERcobra 2000 использовал в качестве основного хранилища данных регистровый файл, однако на практике 31-го регистра недостаточно для выполнения сложных программ. Для этих целей используется **основная память**, роль которой в нашей системе будет выполнять **память данных**.
|
||||
|
||||
## Цель
|
||||
|
||||
Описать память данных, с побайтовой адресацией.
|
||||
|
||||
## Материал для подготовки к лабораторной работе
|
||||
|
||||
Для успешного выполнения лабораторной работы, вам необходимо использовать навыки, полученные при написании [лабораторной работы №3](../03.%20Register%20file%20and%20memory/) "Регистровый файл и память инструкций";
|
||||
|
||||
## Теория
|
||||
|
||||
В задании по реализации памяти инструкций [лабораторной работы №3](../03.%20Register%20file%20and%20memory/) байтовая адресация была описана следующим образом:
|
||||
|
||||
> Байтовая адресация означает, что процессор способен обращаться к отдельным байтам в памяти (за каждым байтом памяти закреплен свой индивидуальный адрес).
|
||||
|
||||
Данное описание было дано не совсем корректным образом, чтобы в третьей лабораторной работе было более четкое понимание задания. В чем заключается некорректность? Процессор должен быть способен не только **обращаться** к отдельным байтам в памяти, но и **обновлять** в памяти любой отдельный байт, а также **считывать** отдельные байты.
|
||||
|
||||
Вопрос считывания отдельного байта будет решаться специальным модулем **загрузки и сохранения**, памяти данных при этом будет достаточно возвращать всё слово, содержащее запрашиваемый байт как это было уже делалось для памяти инструкций.
|
||||
|
||||
Нас интересует возможность памяти обновлять любой из байт в слове. Подобный функционал часто используется при реализации памяти и в системных интерфейсах, например AXI4 или APB. Для этого используется специальный сигнал, который называется `byte enable`. Разрядность этого сигнала равна числу байт в шине данных (в нашем случае разрядность `byte enable` составляет 4). Вы можете представить этот сигнал, как 4 провода, каждый из которых является сигналом разрешения записи для отдельной памяти с шириной данный в 1 байт.
|
||||
|
||||
Давайте разберемся как это будет работать. Допустим, мы хотим записать значение `0xA5` по адресу `0x6`. Поскольку мы работаем с байтовой адресацией, как и при реализации памяти инструкций, пришедший адрес необходимо будет разделить на 4 (см. _рис. 1_). В итоге мы получим указатель на первую 32-битную ячейку памяти (`6 / 4 = 1`). Однако, чтобы пришедшие данные были в итоге записаны не в нулевой байт первого слова (четвертый байт памяти), во второй, мы будем использовать сигнал `byte enable`, второй бит которого будет равен единице.
|
||||
|
||||
|
||||
|
||||
Чтобы данные остальных байт не были испорчены, при описании памяти на SystemVerilog нужно разделить запись в отдельные байты. Для того, чтобы получить доступ к отдельным диапазонам бит ячейки памяти, после указания индекса ячейки необходимо указать диапазон бит, к которым вы хотите получить доступ. К примеру, чтобы получить доступ к битам с 5-го по 3-ий 18-ой ячейки памяти, необходимо использовать следующую запись:
|
||||
|
||||
```SystemVerilog
|
||||
mem[18][5:3];
|
||||
```
|
||||
|
||||
Учитывайте и то, что комбинации значений бит в сигнале `byte enable` могут быть любыми: `0000`, `0100`, `0110`, `1111` и т.п.
|
||||
|
||||
## Задание
|
||||
|
||||
Реализовать память данных с поддержкой обновления отдельных байт в выбранной ячейке памяти.
|
||||
|
||||
У данного модуля будет шесть входных/выходных сигналов:
|
||||
|
||||
- вход тактового синхроимпульса
|
||||
- вход запроса на работу с памятью
|
||||
- вход сигнала разрешения записи
|
||||
- 32-битный вход адреса
|
||||
- 32-битный вход данных записи
|
||||
- 32-битный выход данных синхронного чтения
|
||||
|
||||
Прототип модуля следующий:
|
||||
|
||||
```SystemVerilog
|
||||
module data_mem
|
||||
import memory_pkg::DATA_MEM_SIZE_BYTES;
|
||||
import memory_pkg::DATA_MEM_SIZE_WORDS;
|
||||
(
|
||||
input logic clk_i,
|
||||
input logic mem_req_i,
|
||||
input logic write_enable_i,
|
||||
input logic [ 3:0] byte_enable_i,
|
||||
input logic [31:0] addr_i,
|
||||
input logic [31:0] write_data_i,
|
||||
output logic [31:0] read_data_o,
|
||||
output logic ready_o
|
||||
);
|
||||
```
|
||||
|
||||
Как и память инструкций, память данных будет состоять из 32-битных ячеек, количество которых определяется параметром. Как и в памяти инструкций, необходимо использовать только младшие биты адреса в количестве, равном логарифму по основанию 2 от количества ячеек памяти, начиная со второго бита (см. код памяти инструкций из ЛР№3).
|
||||
|
||||
Отличие от памяти инструкций будет заключаться в:
|
||||
|
||||
- синхронном порте на чтение;
|
||||
- наличии порта на запись;
|
||||
- посредством этого порта на запись можно менять отдельные байты ячейки памяти.
|
||||
|
||||
Синхронный порт на чтение означает, что выдача данных по предоставленному адресу осуществляется не сразу же, а на следующий такт (см. _рис. 2_). Для этого, перед выходным сигналом ставится отдельный регистр. Таким образом, выдача данных с порта на чтение будет осуществляться не с помощью непрерывного присваивания, а посредством блока `always_ff` (см. практическую часть ЛР№3).
|
||||
|
||||
Также в памяти появилось три управляющих сигнала:
|
||||
|
||||
- `mem_req_i`,
|
||||
- `write_enable_i`,
|
||||
- `byte_enable_i`
|
||||
|
||||
и один статусный:
|
||||
|
||||
- `ready_o`.
|
||||
|
||||
Сигнал `mem_req_i` является сигналом запроса на работу с памятью. Без этого сигнала память не должна выполнять операции чтения/записи. Как сделать так, чтобы не происходило чтение без запроса? Например, не обновлять значение, считанное во время предыдущей операции чтения.
|
||||
|
||||
Сигнал `write_enable_i` является сигналом разрешения записи. Этот сигнал определяет, является ли пришедший запрос в память **запросом на запись**, либо же **запросом на чтение**.
|
||||
|
||||
Если `mem_req_i == 1` и `write_enable_i == 0`, то происходит запрос на чтение из памяти. В этом случае, необходимо записать в выходной регистр `read_data_o` значение из ячейки, на которую указывает `addr_i`. Во всех других случаях чтение из памяти не производится (`read_data_o` сохраняет предыдущее значение).
|
||||
|
||||

|
||||
|
||||
_Рисунок 2. Операции запросов на чтение._
|
||||
|
||||
Если `mem_req_i == 1` и `write_enable_i == 1`, то происходит запрос на запись в память. В этом случае, необходимо записать значение `write_data_i` в ячейку по, на которую указывает `addr_i`. Во всех других случаях (любой из сигналов `mem_req_i`, `write_enable_i` равен нулю), запись в память не производится. Запись необходимо производить только в те байты указанной ячейки, которым соответствуют биты сигнала `byte_enable_i`, равные единице.
|
||||
|
||||

|
||||
|
||||
_Рисунок 3. Операции запросов на запись._
|
||||
|
||||
Перед выходом `ready_o` должен стоять регистр, в который каждый такт записывается значение `mem_req_i` (см. _рис. 2_). Такая простая логика этого сигнала обеспечивается тем, что любой запрос обрабатывается гарантированно за 1 такт. В реальности, обращение в память может занимать сотни тактов процессора, причем их число бывает недетерминированным (нельзя заранее предсказать сколько тактов займет очередной запрос в память). Именно поэтому стандартные интерфейсы обычно используют такие сигналы как `ready` или `valid`, позволяющие синхронизировать разные блоки системы.
|
||||
|
||||
## Порядок выполнения работы
|
||||
|
||||
1. Внимательно ознакомьтесь с заданием. В случае возникновения вопросов, проконсультируйтесь с преподавателем.
|
||||
2. Реализуйте память данных. Для этого:
|
||||
1. В `Design Sources` проекта создайте `SystemVerilog`-файл `data_mem.sv`.
|
||||
2. Опишите в нем модуль памяти данных с таким же именем и портами, как указано в задании.
|
||||
1. Описание модуля будет схожим с описанием модуля памяти инструкций, однако порт чтения в этот раз будет **синхронным** (запись в него будет происходить в блоке `always_ff`). Количество ячеек памяти данных определяется параметром `DATA_MEM_SIZE_WORDS`, определенным в `memory_pkg`. Кроме того, необходимо будет описать логику записи данных в память.
|
||||
2. Запись в ячейки памяти описывается подобно записи данных в [регистры](../../Basic%20Verilog%20structures/Registers.md), только при этом, происходит доступ к конкретной ячейке памяти с помощью входа `addr_i`.
|
||||
3. Перед тем как обратиться к ячейке памяти, значение с `addr_i` необходимо преобразовать по аналогии с памятью инструкций.
|
||||
4. Обратите внимание что работа с памятью должна осуществляться только когда сигнал `mem_req_i == 1`. В противном случае запись не должна производиться, а на шине `read_data_o` должен оставаться результат предыдущего чтения.
|
||||
5. При этом запись должна вестись только в те байты выбранной ячейки памяти, которым соответствуют биты сигнала `byte_enable_i`, выставленные в `1`.
|
||||
6. У памяти есть дополнительный выход `ready_o`, перед которым необходимо реализовать регистр, в который каждый такт записывается значение `mem_req_i`.
|
||||
3. После описания памяти данных, её необходимо проверить с помощью тестового окружения.
|
||||
1. Тестовое окружение находится [`здесь`](tb_data_mem.sv).
|
||||
2. Для запуска симуляции воспользуйтесь [`этой инструкцией`](../../Vivado%20Basics/Run%20Simulation.md).
|
||||
3. Перед запуском симуляции убедитесь, что в качестве top-level модуля выбран корректный (`tb_data_mem`).
|
||||
4. **Во время симуляции, вы должны прожать "Run All" и убедиться, что в логе есть сообщение о завершении теста!**
|
18
Labs/06. Main memory/memory_pkg.sv
Normal file
18
Labs/06. Main memory/memory_pkg.sv
Normal file
@@ -0,0 +1,18 @@
|
||||
/* -----------------------------------------------------------------------------
|
||||
* Project Name : Architectures of Processor Systems (APS) lab work
|
||||
* Organization : National Research University of Electronic Technology (MIET)
|
||||
* Department : Institute of Microdevices and Control Systems
|
||||
* Author(s) : Andrei Solodovnikov
|
||||
* Email(s) : hepoh@org.miet.ru
|
||||
|
||||
See https://github.com/MPSU/APS/blob/master/LICENSE file for licensing details.
|
||||
* ------------------------------------------------------------------------------
|
||||
*/
|
||||
package memory_pkg;
|
||||
|
||||
localparam INSTR_MEM_SIZE_BYTES = 512;
|
||||
localparam INSTR_MEM_SIZE_WORDS = INSTR_MEM_SIZE_BYTES / 4;
|
||||
localparam DATA_MEM_SIZE_BYTES = 512;
|
||||
localparam DATA_MEM_SIZE_BYTES = DATA_MEM_SIZE_BYTES / 4;
|
||||
|
||||
endpackage
|
Reference in New Issue
Block a user