mirror of
https://github.com/MPSU/APS.git
synced 2025-09-16 01:30:10 +00:00
Исправление пунктуационных и орфографических ошибок
В основном вставка пропущенных запятых и удаление лишнего пробела из союза "а также", но были и другие ошибки и опечатки.
This commit is contained in:
@@ -13,7 +13,7 @@ RISC-V — открытая и свободная система набора к
|
||||
|
||||
В архитектуре RISC-V имеется обязательный для реализации минимальный список команд – набор инструкций **I** (Integer). В этот набор входят различные логические и арифметические операции с целыми числами, работа с памятью, и команды управления. Этого достаточно для обеспечения поддержки компиляторов, ассемблеров, компоновщиков и операционных систем (с дополнительными привилегированными инструкциями). Плюс, таким образом обеспечивается удобный "скелет" ISA и программного инструментария, вокруг которого могут быть построены более специализированные ISA процессоров путем добавления дополнительных инструкций.
|
||||
|
||||
Строго говоря RISC-V - это семейство родственных ISA, из которых в настоящее время существует четыре базовые ISA. Каждый базовый целочисленный набор инструкций характеризуется `шириной целочисленных регистров` и соответствующим `размером адресного пространства`, а также `количеством целочисленных регистров`. Существует два основных базовых целочисленных варианта, `RV32I` и `RV64I`, которые, соответственно, обеспечивают 32- или 64-битное адресное пространство и соответствующие размеры регистров регистрового файла. На основе базового набора инструкций `RV32I` существует вариант подмножества `RV32E`, который был добавлен для поддержки небольших микроконтроллеров и имеет вдвое меньшее количество целочисленных регистров – 16, вместо 32. Разрабатывается вариант `RV128I` базового целочисленного набора инструкций, поддерживающий плоское 128-битное адресное пространство. Также, стоит подчеркнуть, что размеры регистров и адресного пространства, во всех перечисленных стандартных наборах инструкций, не влияют на размер инструкций – во всех случаях они кодируются 32-битными числами. То есть, и для `RV32I`, и для `RV64I` одна инструкция будет кодироваться 32 битами. Базовые целочисленные наборы команд используют представление знаковых целых чисел в дополнительном коде.
|
||||
Строго говоря RISC-V — это семейство родственных ISA, из которых в настоящее время существует четыре базовые ISA. Каждый базовый целочисленный набор инструкций характеризуется `шириной целочисленных регистров` и соответствующим `размером адресного пространства`, а также `количеством целочисленных регистров`. Существует два основных базовых целочисленных варианта, `RV32I` и `RV64I`, которые, соответственно, обеспечивают 32- или 64-битное адресное пространство и соответствующие размеры регистров регистрового файла. На основе базового набора инструкций `RV32I` существует вариант подмножества `RV32E`, который был добавлен для поддержки небольших микроконтроллеров и имеет вдвое меньшее количество целочисленных регистров – 16, вместо 32. Разрабатывается вариант `RV128I` базового целочисленного набора инструкций, поддерживающий плоское 128-битное адресное пространство. Также, стоит подчеркнуть, что размеры регистров и адресного пространства, во всех перечисленных стандартных наборах инструкций, не влияют на размер инструкций – во всех случаях они кодируются 32-битными числами. То есть, и для `RV32I`, и для `RV64I` одна инструкция будет кодироваться 32 битами. Базовые целочисленные наборы команд используют представление знаковых целых чисел в дополнительном коде.
|
||||
|
||||
В рамках дисциплины АПС затрагивается только `RV32I`, то есть стандартный набор целочисленных инструкций, предусматривающий в процессоре регистровый файл из 32-х 32-битных регистров, и использующий 32-битное адресное пространство памяти.
|
||||
|
||||
@@ -23,7 +23,7 @@ RISC-V — открытая и свободная система набора к
|
||||
- **A** — Атомарные операции (Atomic Instructions), инструкции для атомарного чтения-изменения-записи в память для межпроцессорной синхронизации
|
||||
- **F** — Стандартное расширение для арифметических операций с плавающей точкой одинарной точности (Single-Precision Floating-Point) добавляет регистры с плавающей точкой, инструкции вычислений с одинарной точностью, а также инструкции загрузки и сохранения в регистровый файл для чисел с плавающей точкой
|
||||
- **D** — Стандартное расширение с плавающей точкой двойной точности (Double-Precision Floating-Point) расширяет регистры с плавающей точкой до 64 бит и добавляет инструкции вычислений с двойной точностью, загрузку и сохранение
|
||||
- **C** — Набор сжатых инструкций (Compressed Instructions), позволяющий кодировать инструкции 16-битными словами, что позволяет уплотнить программный код (если одну и ту же программу можно писать 16-битными словами вместо 32-битных, значит её размер сократится в 2 раза). Разумеется у такого уплотнения есть своя цена, иначе инструкции просто кодировали бы 16-ю битами вместо 32. У сжатых инструкций меньший диапазон адресов и констант.
|
||||
- **C** — Набор сжатых инструкций (Compressed Instructions), позволяющий кодировать инструкции 16-битными словами, что позволяет уплотнить программный код (если одну и ту же программу можно писать 16-битными словами вместо 32-битных, значит её размер сократится в 2 раза). Разумеется, у такого уплотнения есть своя цена, иначе инструкции просто кодировали бы 16-ю битами вместо 32. У сжатых инструкций меньший диапазон адресов и констант.
|
||||
- **Zicsr** — Инструкции для работы с контрольными и статусными регистрами (Control and Status Register (CSR) Instructions). Используется, например, при работе с прерываниями/исключениями и виртуальной памятью
|
||||
- **Zifencei** — Инструкции синхронизации потоков команд и данных (Instruction-Fetch Fence)
|
||||
|
||||
@@ -31,7 +31,7 @@ RISC-V — открытая и свободная система набора к
|
||||
|
||||
Одной из целей проекта RISC-V является его использование в качестве стабильного объекта для разработки программного обеспечения. Для этого ее разработчики определили комбинацию базового ISA (`RV32I` или `RV64I`) и некоторых стандартных расширений (**IMAFD + Zicsr + Zifencei**) как "general-purpose" ISA (набор инструкций общего назначения), а для комбинации расширений набора команд **IMAFDZicsrZifencei** стали использовать аббревиатуру **G**. То есть `RV32G` это тоже самое, что и `RV32IMAFDZicsrZifencei`.
|
||||
|
||||
> Чтобы устройство управления понимало когда оно имеет дело с набором сжатых команд **C**, то есть с 16-битными инструкциями, а когда с другими наборами команд, то есть с инструкциями длиной 32 бита, каждая 32-битная инструкция в младших битах имеет `11`. Если в двух младших битах что-то отличное от `11`, значит это 16-битная инструкция!
|
||||
> Чтобы устройство управления понимало, когда оно имеет дело с набором сжатых команд **C**, то есть с 16-битными инструкциями, а когда с другими наборами команд, то есть с инструкциями длиной 32 бита, каждая 32-битная инструкция в младших битах имеет `11`. Если в двух младших битах что-то отличное от `11`, значит это 16-битная инструкция!
|
||||
|
||||
На рисунке ниже показана видимая пользователю структура для основного подмножества команд для целочисленных вычислений `RV32I`. Она содержит `регистровый файл`, состоящий из 31 регистра общего назначения **x1** – **x31**, каждый из которых может содержать целочисленное значение, и регистра **x0**, жестко привязанного к константе 0. В случае `RV32`, регистры **xN**, и вообще все регистры, имеют длину в 32 бита. Также есть `АЛУ`, выполняющее операции над данными в регистровом файле (концепция RISC - load&store), и `память` с побайтовой адресацией и шириной адреса 32 бита.
|
||||
|
||||
@@ -57,7 +57,7 @@ RISC-V является load&store архитектурой (все операц
|
||||
|
||||
## RV32I
|
||||
|
||||
В таблице ниже приводятся 40 команд стандартного набора целочисленных инструкций `RV32I`: мнемоники языка ассемблера, функции, описания, форматы кодирования и значения соответствующих полей при кодировании. В RISC-V предусмотрено несколько форматов кодирования инструкций (следующий рисунок, еще ниже), то есть договоренность какая информация в каком месте 32-битной инструкции хранится и как она представлена. У всех операций есть поле `opcode` (operation code - код операции), в котором закодировано "что нужно сделать". По полю `opcode` устройство управления понимает что требуется сделать процессору и каким именно способом закодирована инструкция (**R**, **I**, **S**, **B**, **U** или **J**). В 32-битных инструкциях два младших бита всегда равны `11`.
|
||||
В таблице ниже приводятся 40 команд стандартного набора целочисленных инструкций `RV32I`: мнемоники языка ассемблера, функции, описания, форматы кодирования и значения соответствующих полей при кодировании. В RISC-V предусмотрено несколько форматов кодирования инструкций (следующий рисунок, еще ниже), то есть договоренность какая информация в каком месте 32-битной инструкции хранится и как она представлена. У всех операций есть поле `opcode` (operation code - код операции), в котором закодировано "что нужно сделать". По полю `opcode` устройство управления понимает, что требуется сделать процессору и каким именно способом закодирована инструкция (**R**, **I**, **S**, **B**, **U** или **J**). В 32-битных инструкциях два младших бита всегда равны `11`.
|
||||
|
||||
Почти все инструкции имеют поле `Func3`, и некоторые – поле `Func7`. Их названия определены их разрядностью: 3 и 7 бит, соответственно. В этих полях, если они есть у инструкции, закодировано уточнение операции. Например, код операции 0010011 указывает на то, что будет выполняться некоторая операция на АЛУ между значением из регистрового файла и константой. Поле `Func3` уточняет операцию, для данного примера, если оно будет равно 0x0, то АЛУ выполнит операцию сложения между значением из регистра и константой из инструкции. Если `Func3` равно 0x6, то будет выполнена операция "логическое ИЛИ".
|
||||
|
||||
@@ -111,7 +111,7 @@ RISC-V является load&store архитектурой (все операц
|
||||
|
||||
> Знаковое расширение — одна из самых важных операций над непосредственными значениями (особенно в `RV64I`). Поэтому в RISC-V знаковый бит всех непосредственных значений всегда содержится в 31-м бите инструкции. Это позволяет выполнять знаковое расширение параллельно с декодированием команды.
|
||||
>
|
||||
> Не смотря на то, что более сложные микроархитектурные реализации имеющие отдельные сумматоры для вычисления адресов условных и безусловных переходов, могут не получить выигрыш от одинакового расположения битов непосредственных значений во всех типах команд, прежде всего мы хотели снизить аппаратные затраты для простейших реализаций.
|
||||
> Несмотря на то, что более сложные микроархитектурные реализации имеющие отдельные сумматоры для вычисления адресов условных и безусловных переходов, могут не получить выигрыш от одинакового расположения битов непосредственных значений во всех типах команд, прежде всего мы хотели снизить аппаратные затраты для простейших реализаций.
|
||||
>
|
||||
> Меняя местами биты в кодировке непосредственных значений инструкций **B** и **J**-типа вместо использования динамических мультиплексоров для умножения константы на 2, мы уменьшили разветвленность сигнала команды и затраты на мультиплексирование примерно в 2 раза. Скремблированное кодирование непосредственных значений добавит незначительную задержку при статической компиляции. Для динамической генерации инструкций есть небольшие дополнительные издержки, однако для наиболее частых коротких ветвлений вперед предусмотрено простое кодирование непосредственных значений.
|
||||
|
||||
@@ -152,9 +152,9 @@ RISC-V является load&store архитектурой (все операц
|
||||
|
||||
`SLTI` (установить, если меньше чем константа) помещает значение 1 в регистр `rd`, если регистр `rs1` меньше, чем расширенное непосредственное значение, когда оба значения обрабатываются как знаковые числа, иначе в `rd` записывается 0. `SLTIU` аналогична, но сравнивает значения как беззнаковые числа (то есть непосредственное значение сначала расширяется до 32 бит, а затем обрабатывается как число без знака). Обратите внимание, что команда `SLTIU rd, rs1, 1` устанавливает `rd` в 1, если `rs1` равен нулю, в противном случае `rd` устанавливается в 0 (псевдоинструкция ассемблера `SEQZ rd, rs`).
|
||||
|
||||
Примечание: у студентов часто возникает вопрос: зачем вообще нужны инструкции вида `SLT`, если есть инструкции вида `BLT`? Например, они могут использоваться для вычисления сложных условий переходов. Один из примеров таких условий вы видели выше, в примере обработке результата сложения на переполнение. Кроме того, не смотря на ограниченность этих инструкций (все они проверяют только на **строго меньше**), мы можем добиться операции **строго больше** поменяв операнды местами, а если результат обоих операций даст `0` — значит операнды равны. Поскольку идея RISC архитектуры в том, чтобы переложить организацию всех этих ухищрений на компилятор, этих оказывается достаточно.
|
||||
Примечание: у студентов часто возникает вопрос: зачем вообще нужны инструкции вида `SLT`, если есть инструкции вида `BLT`? Например, они могут использоваться для вычисления сложных условий переходов. Один из примеров таких условий вы видели выше, в примере обработке результата сложения на переполнение. Кроме того, не смотря на ограниченность этих инструкций (все они проверяют только на **строго меньше**), мы можем добиться операции **строго больше** поменяв операнды местами, а если результат обоих операций даст `0` — значит операнды равны. Поскольку идея RISC архитектуры в том, чтобы переложить организацию всех этих ухищрений на компилятор, этих инструкций оказывается достаточно.
|
||||
|
||||
`ANDI`, `ORI`, `XORI` - это логические операции, которые выполняют побитовое И, ИЛИ и исключающее ИЛИ над регистром `rs1` и непосредственным 12-битным значением с знаковым расширением и помещают результат в `rd`. Обратите внимание, что команда `XORI rd, rs, -1` выполняет побитовую логическую инверсию значения регистра `rs1` (псевдоинструкция `NOT rd, rs`).
|
||||
`ANDI`, `ORI`, `XORI` — это логические операции, которые выполняют побитовое И, ИЛИ и исключающее ИЛИ над регистром `rs1` и непосредственным 12-битным значением с знаковым расширением и помещают результат в `rd`. Обратите внимание, что команда `XORI rd, rs, -1` выполняет побитовую логическую инверсию значения регистра `rs1` (псевдоинструкция `NOT rd, rs`).
|
||||
|
||||

|
||||
|
||||
|
Reference in New Issue
Block a user