Исправление пунктуационных и орфографических ошибок

В основном вставка пропущенных запятых и удаление лишнего пробела из
союза "а также", но были и другие ошибки и опечатки.
This commit is contained in:
Andrei Solodovnikov
2024-01-11 11:44:44 +03:00
parent 80c4401bdd
commit 688ea46d68
35 changed files with 162 additions and 166 deletions

View File

@@ -20,7 +20,7 @@
**Причина:** ошибка [связана с проблемами Win Sockets](https://support.xilinx.com/s/question/0D52E00006iI37SSAS/isim-124-m81d-fatal-error-privatechannel-error-creating-client-socket?language=en_US), из-за которых симуляция не может быть запущена на сетевых дисках.
**Способ воспроизведения ошибки:** создать проект на сетевом диске.
**Решение:** Скорее всего, вы создали проект на диске `H:/`. Создайте проект на локальном диске (например, на рабочем столе диске `C:/`)
**Решение:** скорее всего, вы создали проект на диске `H:/`. Создайте проект на локальном диске (например, на рабочем столе диске `C:/`)
---
@@ -37,7 +37,7 @@
**Причина:** вы запустили симуляцию с другим `top level`-модулем, не закрыв предыдущую симуляцию.
Скорее всего, после создания тестбенча, вы слишком быстро запустили первую симуляцию. Из-за этого, Vivado не успел обновить иерархию модулей и сделать тестбенч `top-level`-модулем. На запущенной симуляции все сигналы находились в Z и X состояниях, после чего вы попробовали запустить ее снова. К моменту повторного запуска иерархия модулей обновилась, сменился `top-level`, что и привело к ошибке.
**Способ воспроизведения ошибки:** запустить симуляцию, создать новый файл симуляции, сделать его `top-level`-модулем, запустить симуляцию.
**Решение:** Закройте предыдущую симуляцию (правой кнопкой мыши по кнопки SIMULATION -> Close Simulation) затем запустите новую.
**Решение:** закройте предыдущую симуляцию (правой кнопкой мыши по кнопки SIMULATION -> Close Simulation) затем запустите новую.
<details>
@@ -53,7 +53,7 @@
**Причина:** кириллические символы (русские буквы) в пути рабочей папки Vivado. Скорее всего, причина в кириллице в имени пользователя (**НЕ В ПУТИ УСТАНОВКИ VIVADO**).
**Способ воспроизведения ошибки:** (см. решение, только для воспроизведение необходимо сделать обратно, дать папке имя с кириллицей)
**Решение:** Чтобы не создавать нового пользователя без кириллицы в имени, проще назначить Vivado новую рабочую папку.
**Решение:** чтобы не создавать нового пользователя без кириллицы в имени, проще назначить Vivado новую рабочую папку.
Для этого:
1. Создайте в корне диска `C:/` какую-нибудь папку (например Vivado_temp).
@@ -73,8 +73,8 @@
</details>
**Причина:** Скорее всего, проблема в том, что файлы установки (**НЕ ПУТЬ УСТАНОВКИ VIVADO**) расположены по пути с кириллическими символами (например, в какой-то личной папке "Загрузки").
**Решение:** Переместите файлы установки в директорию, не содержащую кириллицу в пути.
**Причина:** скорее всего, проблема в том, что файлы установки (**НЕ ПУТЬ УСТАНОВКИ VIVADO**) расположены по пути с кириллическими символами (например, в какой-то личной папке "Загрузки").
**Решение:** переместите файлы установки в директорию, не содержащую кириллицу в пути.
---

View File

@@ -1,6 +1,6 @@
# Список дополнительной литературы
В приведенном ниже списке будут даны описания книг, а так же способы их получения: покупка/чтение в электронной библиотеке/получение экземпляра книги в университетской библиотеке. <!--Руководство по работе с электронной библиотекой вы можете найти [здесь](<placeholder>)-->.
В приведенном ниже списке будут даны описания книг, а также способы их получения: покупка/чтение в электронной библиотеке/получение экземпляра книги в университетской библиотеке. <!--Руководство по работе с электронной библиотекой вы можете найти [здесь](<placeholder>)-->.
- [Список дополнительной литературы](#список-дополнительной-литературы)
- [Митио Сибуя и Такаси Тонаги: Центральный процессор. Образовательная манга](#митио-сибуя-и-такаси-тонаги-центральный-процессор-образовательная-манга)
@@ -35,7 +35,7 @@
## Дэвид М. Харрис и Сара Л. Харрис: Цифровая схемотехника и архитектура компьютера. Дополнение по архитектуре ARM*
Как и следует из названия, эта книга дополняет предыдущие описанием отличий архитектуры **ARM** от **MIPS** и **RISC-V**. Книга состоит из глав, посвященных архитектуре процессоров **ARM**, их микроархитектуре, описанию подсистемы памяти и системы ввода-вывода. Также в приложении приведена система команд **ARM**. Почему такое пристальное внимание этой архитектуре? Потому что это одна из самых массово используемых архитектур в мире. Например, 98% всех мобильных телефонов работают на процессорах с архитектурой **ARM**. Книгу можно приобрести [тут](https://dmkpress.com/catalog/electronics/circuit_design/978-5-97060-650-6/), а так же прочесть в [электронной библиотеке](https://e.lanbook.com/book/111431).
Как и следует из названия, эта книга дополняет предыдущие описанием отличий архитектуры **ARM** от **MIPS** и **RISC-V**. Книга состоит из глав, посвященных архитектуре процессоров **ARM**, их микроархитектуре, описанию подсистемы памяти и системы ввода-вывода. Также в приложении приведена система команд **ARM**. Почему такое пристальное внимание этой архитектуре? Потому что это одна из самых массово используемых архитектур в мире. Например, 98% всех мобильных телефонов работают на процессорах с архитектурой **ARM**. Книгу можно приобрести [тут](https://dmkpress.com/catalog/electronics/circuit_design/978-5-97060-650-6/), а также прочесть в [электронной библиотеке](https://e.lanbook.com/book/111431).
![../.pic/Other/Further%20readings/arm.jpg](../.pic/Other/Further%20readings/arm.jpg)

View File

@@ -1,6 +1,6 @@
# Учебный сервер для студентов
Данный сервер поднят для выполнения студентами их [индивидуального задания](../Labs/04.%20Primitive%20programmable%20device#индивидуальные-задания), а так же для тех студентов, кому не хватило места в учебной аудитории. На сервере установлены: `Vivado`, `VSCode`, `gcc`, `git`. Поскольку сервер имеет ограниченные ресурсы, а студенты не имеют привычки закрывать за собой программы при завершении сессии, тут не установлен браузер. Имейте в виду, что если вы закрыли сессию, не закрыв Vivado и там остались несохраненные файлы, то вы рискуете потерять свои изменения.
Данный сервер поднят для выполнения студентами их [индивидуального задания](../Labs/04.%20Primitive%20programmable%20device#индивидуальные-задания), а также для тех студентов, кому не хватило места в учебной аудитории. На сервере установлены: `Vivado`, `VSCode`, `gcc`, `git`. Поскольку сервер имеет ограниченные ресурсы, а студенты не имеют привычки закрывать за собой программы при завершении сессии, тут не установлен браузер. Имейте в виду, что если вы закрыли сессию, не закрыв Vivado и там остались несохраненные файлы, то вы рискуете потерять свои изменения.
## Порядок подключения к серверу
@@ -40,6 +40,6 @@ WinSCP — это программа для Windows с графическим и
1. Необходимо [скачать](https://winscp.net/eng/downloads.php) и установить программу (при установке можно выбрать рекомендованные настройки, можно их кастомизировать под себя).
2. При запуске вам предложат ввести данные для подключения. Заполняете поля аналогично тому, как вы делали для X2Go. Выпадающий список `File Protocol` можете оставить без изменений.
3. В данной программе вы можете сохранить так же и пароль. Вообще говоря это не безопасно и так делать обычно не рекомендуется.
3. В данной программе вы можете сохранить так же и пароль. Вообще говоря, это не безопасно и так делать обычно не рекомендуется.
4. Через `Advanced...->Advanced->Directories->Local Directory`, можно настроить папку на вашем компьютере с данными в которой вы сможете взаимодействовать через WinSCP.
5. Интерфейс перемещения данных предельно интуитивен: файлы и папки можно перетаскивать, копировать и вставлять, скачивать и загружать, удалять, перемещать и переименовывать. Делайте как вам удобно. В процессе могут появляться подтверждающие всплывающие окна.

View File

@@ -13,7 +13,7 @@ RISC-V — открытая и свободная система набора к
В архитектуре RISC-V имеется обязательный для реализации минимальный список команд набор инструкций **I** (Integer). В этот набор входят различные логические и арифметические операции с целыми числами, работа с памятью, и команды управления. Этого достаточно для обеспечения поддержки компиляторов, ассемблеров, компоновщиков и операционных систем (с дополнительными привилегированными инструкциями). Плюс, таким образом обеспечивается удобный "скелет" ISA и программного инструментария, вокруг которого могут быть построены более специализированные ISA процессоров путем добавления дополнительных инструкций.
Строго говоря RISC-V - это семейство родственных ISA, из которых в настоящее время существует четыре базовые ISA. Каждый базовый целочисленный набор инструкций характеризуется `шириной целочисленных регистров` и соответствующим `размером адресного пространства`, а также `количеством целочисленных регистров`. Существует два основных базовых целочисленных варианта, `RV32I` и `RV64I`, которые, соответственно, обеспечивают 32- или 64-битное адресное пространство и соответствующие размеры регистров регистрового файла. На основе базового набора инструкций `RV32I` существует вариант подмножества `RV32E`, который был добавлен для поддержки небольших микроконтроллеров и имеет вдвое меньшее количество целочисленных регистров 16, вместо 32. Разрабатывается вариант `RV128I` базового целочисленного набора инструкций, поддерживающий плоское 128-битное адресное пространство. Также, стоит подчеркнуть, что размеры регистров и адресного пространства, во всех перечисленных стандартных наборах инструкций, не влияют на размер инструкций во всех случаях они кодируются 32-битными числами. То есть, и для `RV32I`, и для `RV64I` одна инструкция будет кодироваться 32 битами. Базовые целочисленные наборы команд используют представление знаковых целых чисел в дополнительном коде.
Строго говоря RISC-V это семейство родственных ISA, из которых в настоящее время существует четыре базовые ISA. Каждый базовый целочисленный набор инструкций характеризуется `шириной целочисленных регистров` и соответствующим `размером адресного пространства`, а также `количеством целочисленных регистров`. Существует два основных базовых целочисленных варианта, `RV32I` и `RV64I`, которые, соответственно, обеспечивают 32- или 64-битное адресное пространство и соответствующие размеры регистров регистрового файла. На основе базового набора инструкций `RV32I` существует вариант подмножества `RV32E`, который был добавлен для поддержки небольших микроконтроллеров и имеет вдвое меньшее количество целочисленных регистров 16, вместо 32. Разрабатывается вариант `RV128I` базового целочисленного набора инструкций, поддерживающий плоское 128-битное адресное пространство. Также, стоит подчеркнуть, что размеры регистров и адресного пространства, во всех перечисленных стандартных наборах инструкций, не влияют на размер инструкций во всех случаях они кодируются 32-битными числами. То есть, и для `RV32I`, и для `RV64I` одна инструкция будет кодироваться 32 битами. Базовые целочисленные наборы команд используют представление знаковых целых чисел в дополнительном коде.
В рамках дисциплины АПС затрагивается только `RV32I`, то есть стандартный набор целочисленных инструкций, предусматривающий в процессоре регистровый файл из 32-х 32-битных регистров, и использующий 32-битное адресное пространство памяти.
@@ -23,7 +23,7 @@ RISC-V — открытая и свободная система набора к
- **A** — Атомарные операции (Atomic Instructions), инструкции для атомарного чтения-изменения-записи в память для межпроцессорной синхронизации
- **F** — Стандартное расширение для арифметических операций с плавающей точкой одинарной точности (Single-Precision Floating-Point) добавляет регистры с плавающей точкой, инструкции вычислений с одинарной точностью, а также инструкции загрузки и сохранения в регистровый файл для чисел с плавающей точкой
- **D** — Стандартное расширение с плавающей точкой двойной точности (Double-Precision Floating-Point) расширяет регистры с плавающей точкой до 64 бит и добавляет инструкции вычислений с двойной точностью, загрузку и сохранение
- **C** — Набор сжатых инструкций (Compressed Instructions), позволяющий кодировать инструкции 16-битными словами, что позволяет уплотнить программный код (если одну и ту же программу можно писать 16-битными словами вместо 32-битных, значит её размер сократится в 2 раза). Разумеется у такого уплотнения есть своя цена, иначе инструкции просто кодировали бы 16-ю битами вместо 32. У сжатых инструкций меньший диапазон адресов и констант.
- **C** — Набор сжатых инструкций (Compressed Instructions), позволяющий кодировать инструкции 16-битными словами, что позволяет уплотнить программный код (если одну и ту же программу можно писать 16-битными словами вместо 32-битных, значит её размер сократится в 2 раза). Разумеется, у такого уплотнения есть своя цена, иначе инструкции просто кодировали бы 16-ю битами вместо 32. У сжатых инструкций меньший диапазон адресов и констант.
- **Zicsr** — Инструкции для работы с контрольными и статусными регистрами (Control and Status Register (CSR) Instructions). Используется, например, при работе с прерываниями/исключениями и виртуальной памятью
- **Zifencei** — Инструкции синхронизации потоков команд и данных (Instruction-Fetch Fence)
@@ -31,7 +31,7 @@ RISC-V — открытая и свободная система набора к
Одной из целей проекта RISC-V является его использование в качестве стабильного объекта для разработки программного обеспечения. Для этого ее разработчики определили комбинацию базового ISA (`RV32I` или `RV64I`) и некоторых стандартных расширений (**IMAFD + Zicsr + Zifencei**) как "general-purpose" ISA (набор инструкций общего назначения), а для комбинации расширений набора команд **IMAFDZicsrZifencei** стали использовать аббревиатуру **G**. То есть `RV32G` это тоже самое, что и `RV32IMAFDZicsrZifencei`.
> Чтобы устройство управления понимало когда оно имеет дело с набором сжатых команд **C**, то есть с 16-битными инструкциями, а когда с другими наборами команд, то есть с инструкциями длиной 32 бита, каждая 32-битная инструкция в младших битах имеет `11`. Если в двух младших битах что-то отличное от `11`, значит это 16-битная инструкция!
> Чтобы устройство управления понимало, когда оно имеет дело с набором сжатых команд **C**, то есть с 16-битными инструкциями, а когда с другими наборами команд, то есть с инструкциями длиной 32 бита, каждая 32-битная инструкция в младших битах имеет `11`. Если в двух младших битах что-то отличное от `11`, значит это 16-битная инструкция!
На рисунке ниже показана видимая пользователю структура для основного подмножества команд для целочисленных вычислений `RV32I`. Она содержит `регистровый файл`, состоящий из 31 регистра общего назначения **x1** **x31**, каждый из которых может содержать целочисленное значение, и регистра **x0**, жестко привязанного к константе 0. В случае `RV32`, регистры **xN**, и вообще все регистры, имеют длину в 32 бита. Также есть `АЛУ`, выполняющее операции над данными в регистровом файле (концепция RISC - load&store), и `память` с побайтовой адресацией и шириной адреса 32 бита.
@@ -57,7 +57,7 @@ RISC-V является load&store архитектурой (все операц
## RV32I
В таблице ниже приводятся 40 команд стандартного набора целочисленных инструкций `RV32I`: мнемоники языка ассемблера, функции, описания, форматы кодирования и значения соответствующих полей при кодировании. В RISC-V предусмотрено несколько форматов кодирования инструкций (следующий рисунок, еще ниже), то есть договоренность какая информация в каком месте 32-битной инструкции хранится и как она представлена. У всех операций есть поле `opcode` (operation code - код операции), в котором закодировано "что нужно сделать". По полю `opcode` устройство управления понимает что требуется сделать процессору и каким именно способом закодирована инструкция (**R**, **I**, **S**, **B**, **U** или **J**). В 32-битных инструкциях два младших бита всегда равны `11`.
В таблице ниже приводятся 40 команд стандартного набора целочисленных инструкций `RV32I`: мнемоники языка ассемблера, функции, описания, форматы кодирования и значения соответствующих полей при кодировании. В RISC-V предусмотрено несколько форматов кодирования инструкций (следующий рисунок, еще ниже), то есть договоренность какая информация в каком месте 32-битной инструкции хранится и как она представлена. У всех операций есть поле `opcode` (operation code - код операции), в котором закодировано "что нужно сделать". По полю `opcode` устройство управления понимает, что требуется сделать процессору и каким именно способом закодирована инструкция (**R**, **I**, **S**, **B**, **U** или **J**). В 32-битных инструкциях два младших бита всегда равны `11`.
Почти все инструкции имеют поле `Func3`, и некоторые поле `Func7`. Их названия определены их разрядностью: 3 и 7 бит, соответственно. В этих полях, если они есть у инструкции, закодировано уточнение операции. Например, код операции 0010011 указывает на то, что будет выполняться некоторая операция на АЛУ между значением из регистрового файла и константой. Поле `Func3` уточняет операцию, для данного примера, если оно будет равно 0x0, то АЛУ выполнит операцию сложения между значением из регистра и константой из инструкции. Если `Func3` равно 0x6, то будет выполнена операция "логическое ИЛИ".
@@ -111,7 +111,7 @@ RISC-V является load&store архитектурой (все операц
> Знаковое расширение — одна из самых важных операций над непосредственными значениями (особенно в `RV64I`). Поэтому в RISC-V знаковый бит всех непосредственных значений всегда содержится в 31-м бите инструкции. Это позволяет выполнять знаковое расширение параллельно с декодированием команды.
>
> Не смотря на то, что более сложные микроархитектурные реализации имеющие отдельные сумматоры для вычисления адресов условных и безусловных переходов, могут не получить выигрыш от одинакового расположения битов непосредственных значений во всех типах команд, прежде всего мы хотели снизить аппаратные затраты для простейших реализаций.
> Несмотря на то, что более сложные микроархитектурные реализации имеющие отдельные сумматоры для вычисления адресов условных и безусловных переходов, могут не получить выигрыш от одинакового расположения битов непосредственных значений во всех типах команд, прежде всего мы хотели снизить аппаратные затраты для простейших реализаций.
>
> Меняя местами биты в кодировке непосредственных значений инструкций **B** и **J**-типа вместо использования динамических мультиплексоров для умножения константы на 2, мы уменьшили разветвленность сигнала команды и затраты на мультиплексирование примерно в 2 раза. Скремблированное кодирование непосредственных значений добавит незначительную задержку при статической компиляции. Для динамической генерации инструкций есть небольшие дополнительные издержки, однако для наиболее частых коротких ветвлений вперед предусмотрено простое кодирование непосредственных значений.
@@ -152,9 +152,9 @@ RISC-V является load&store архитектурой (все операц
`SLTI` (установить, если меньше чем константа) помещает значение 1 в регистр `rd`, если регистр `rs1` меньше, чем расширенное непосредственное значение, когда оба значения обрабатываются как знаковые числа, иначе в `rd` записывается 0. `SLTIU` аналогична, но сравнивает значения как беззнаковые числа (то есть непосредственное значение сначала расширяется до 32 бит, а затем обрабатывается как число без знака). Обратите внимание, что команда `SLTIU rd, rs1, 1` устанавливает `rd` в 1, если `rs1` равен нулю, в противном случае `rd` устанавливается в 0 (псевдоинструкция ассемблера `SEQZ rd, rs`).
Примечание: у студентов часто возникает вопрос: зачем вообще нужны инструкции вида `SLT`, если есть инструкции вида `BLT`? Например, они могут использоваться для вычисления сложных условий переходов. Один из примеров таких условий вы видели выше, в примере обработке результата сложения на переполнение. Кроме того, не смотря на ограниченность этих инструкций (все они проверяют только на **строго меньше**), мы можем добиться операции **строго больше** поменяв операнды местами, а если результат обоих операций даст `0` — значит операнды равны. Поскольку идея RISC архитектуры в том, чтобы переложить организацию всех этих ухищрений на компилятор, этих оказывается достаточно.
Примечание: у студентов часто возникает вопрос: зачем вообще нужны инструкции вида `SLT`, если есть инструкции вида `BLT`? Например, они могут использоваться для вычисления сложных условий переходов. Один из примеров таких условий вы видели выше, в примере обработке результата сложения на переполнение. Кроме того, не смотря на ограниченность этих инструкций (все они проверяют только на **строго меньше**), мы можем добиться операции **строго больше** поменяв операнды местами, а если результат обоих операций даст `0` — значит операнды равны. Поскольку идея RISC архитектуры в том, чтобы переложить организацию всех этих ухищрений на компилятор, этих инструкций оказывается достаточно.
`ANDI`, `ORI`, `XORI` - это логические операции, которые выполняют побитовое И, ИЛИ и исключающее ИЛИ над регистром `rs1` и непосредственным 12-битным значением с знаковым расширением и помещают результат в `rd`. Обратите внимание, что команда `XORI rd, rs, -1` выполняет побитовую логическую инверсию значения регистра `rs1` (псевдоинструкция `NOT rd, rs`).
`ANDI`, `ORI`, `XORI` это логические операции, которые выполняют побитовое И, ИЛИ и исключающее ИЛИ над регистром `rs1` и непосредственным 12-битным значением с знаковым расширением и помещают результат в `rd`. Обратите внимание, что команда `XORI rd, rs, -1` выполняет побитовую логическую инверсию значения регистра `rs1` (псевдоинструкция `NOT rd, rs`).
![../.pic/Other/rv32i/slli_srli_srai.png](../.pic/Other/rv32i/slli_srli_srai.png)