mirror of
https://github.com/MPSU/APS.git
synced 2025-09-15 17:20:10 +00:00
Исправление пунктуационных и орфографических ошибок
В основном вставка пропущенных запятых и удаление лишнего пробела из союза "а также", но были и другие ошибки и опечатки.
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
# Лабораторная работа 3 "Регистровый файл и внешняя память"
|
||||
|
||||
Процессор — это программно-управляемое устройство выполняющее обработку информации и управление этим процессом. Очевидно, программа, которая управляет процессором, должна где-то храниться. Данные, с которыми процессор работает, тоже должны быть в доступном месте. Нужна память!
|
||||
Процессор — это программно-управляемое устройство, выполняющее обработку информации и управление этим процессом. Очевидно, программа, которая управляет процессором, должна где-то храниться. Данные, с которыми процессор работает, тоже должны быть в доступном месте. Нужна память!
|
||||
|
||||
## Цель
|
||||
|
||||
@@ -54,7 +54,7 @@
|
||||
|
||||
*Рисунок 1. Примеры блоков ПЗУ и ОЗУ*
|
||||
|
||||
Кроме того, различают память с **синхронным** и **асинхронным** чтением. В первом случае, перед выходным сигналом шины данных ставится дополнительный регистр, в который по тактовому синхроимпульсу записываются запрашиваемые данные. Такой способ может очень сильно сократить **критический путь** цифровой схемы, но требует дополнительный такт на доступ в память. В свою очередь, асинхронное чтение позволяет получить данные не дожидаясь очередного синхроимпульса, но такой способ увеличивает критический путь.
|
||||
Кроме того, различают память с **синхронным** и **асинхронным** чтением. В первом случае, перед выходным сигналом шины данных ставится дополнительный регистр, в который по тактовому синхроимпульсу записываются запрашиваемые данные. Такой способ может очень сильно сократить **критический путь** цифровой схемы, но требует дополнительный такт на доступ в память. В свою очередь, асинхронное чтение позволяет получить данные, не дожидаясь очередного синхроимпульса, но такой способ увеличивает критический путь.
|
||||
|
||||
Еще одной характеристикой памяти является количество доступных портов. Количество портов определяет к скольким ячейкам памяти можно обратиться одновременно. Проще говоря, сколько входов адреса существует. Все примеры памяти рассмотренные выше являются **однопортовыми**, то есть у них один порт. Например, если у памяти 2 входа адреса `addr1` и `addr2` — это **двухпортовая память**. При этом не важно, можно ли по этим адресам только читать/писать или выполнять обе операции.
|
||||
|
||||
@@ -66,11 +66,11 @@
|
||||
|
||||
*Рисунок 2. Структурная схема логического блока в ПЛИС*
|
||||
|
||||
В логическом блоке есть **таблицы подстановки**(Look Up Table, LUT), которые представляют собой не что иное как память, которая переконфигурируется под нужды хранения, а не реализацию логики. Таким образом, трехвходовой LUT может выступать в роли восьмиразрядной памяти.
|
||||
В логическом блоке есть **таблицы подстановки** (Look Up Table, LUT), которые представляют собой не что иное как память, которая переконфигурируется под нужды хранения, а не реализацию логики. Таким образом, трехвходовой LUT может выступать в роли восьмиразрядной памяти.
|
||||
|
||||
Однако LUT будет сложно приспособить под многопортовую память: посмотрим на схему еще раз: три входа LUT формируют адрес одной из восьми ячеек. Это означает, что среди этих восьми ячеек нельзя обратиться к двум из них одновременно.
|
||||
|
||||
Для реализации многопортовой памяти небольшого размера лучше воспользоваться расположенным в логическом блоке D-триггером (**DFF** на *рис. 2*). Не смотря на то, что D-триггер позволяет воспроизвести только 1 разряд элемента памяти, он не ограничивает реализацию по портам.
|
||||
Для реализации многопортовой памяти небольшого размера лучше воспользоваться расположенным в логическом блоке D-триггером (**DFF** на *рис. 2*). Несмотря на то, что D-триггер позволяет воспроизвести только 1 разряд элемента памяти, он не ограничивает реализацию по портам.
|
||||
|
||||
Таким образом, плюс распределенной памяти относительно регистровой заключается в лучшей утилизации ресурсов: одним трёхвходовым LUT можно описать до 8 бит распределенной памяти, в то время как одним D-триггером можно описать только один бит регистровой памяти. Предположим, что в ПЛИС размещены логические блоки, структура которых изображена на *рис. 2* и нам необходимо реализовать 1KiB памяти. Мы можем реализовать распределенную память, используя 64 логических блока (в каждом блоке два трёхвходовых LUT), либо регистровую память, используя 1024 логических блока.
|
||||
|
||||
@@ -107,7 +107,7 @@ logic [19:0] memory3 [1:16]; // А вот memory3 хоть и совпадае
|
||||
// но отличается по адресному пространству
|
||||
// обращение по нулевому адресу выдаст
|
||||
// недетерминированный результат. Это не
|
||||
// значит что память будет плохой или
|
||||
// значит, что память будет плохой или
|
||||
// дефектной, просто надо учитывать эту её
|
||||
// особенность.
|
||||
```
|
||||
@@ -230,9 +230,9 @@ mоdulе instr_mеm(
|
||||
|
||||
При этом по спецификации процессор RISC-V использует память с побайтовой адресацией. Байтовая адресация означает, что процессор способен обращаться к отдельным байтам в памяти (за каждым байтом памяти закреплен свой индивидуальный адрес).
|
||||
|
||||
Однако, если у памяти будут 32-рязрядные ячейки, доступ к конкретному байту будет осложнен, ведь каждая ячейка — это 4 байта. Как получить данные третьего байта памяти? Если обратиться к третьей ячейке в массиве — придут данные 12-15-ых байт (поскольку каждая ячейка содержит по 4 байта). Чтобы получить данные третьего байта, необходимо **разделить значение пришедшего адреса на 4** (отбросив остаток от деления). `3 / 4 = 0` — и действительно, если обратиться к нулевой ячейке памяти — будут получены данные 3-го, 2-го, 1-го и 0-го байт. То что помимо значения третьего байта есть еще данные других байт нас в данный момент не интересует, важна только сама возможность указать адрес конкретного байта.
|
||||
Однако, если у памяти будут 32-рязрядные ячейки, доступ к конкретному байту будет осложнен, ведь каждая ячейка — это 4 байта. Как получить данные третьего байта памяти? Если обратиться к третьей ячейке в массиве — придут данные 12-15-ых байт (поскольку каждая ячейка содержит по 4 байта). Чтобы получить данные третьего байта, необходимо **разделить значение пришедшего адреса на 4** (отбросив остаток от деления). `3 / 4 = 0` — и действительно, если обратиться к нулевой ячейке памяти — будут получены данные 3-го, 2-го, 1-го и 0-го байт. То, что помимо значения третьего байта есть еще данные других байт нас в данный момент не интересует, важна только сама возможность указать адрес конкретного байта.
|
||||
|
||||
Деление на 2<sup>n</sup> можно осуществить отбросив `n` младших бит числа. Учитывая то, что для адресации 1024 ячеек памяти мы будем использовать 10 бит адреса, память инструкций должна выдавать на выход данные, расположенные по адресу `addr_i[11:2]`.
|
||||
Деление на 2<sup>n</sup> можно осуществить, отбросив `n` младших бит числа. Учитывая то, что для адресации 1024 ячеек памяти мы будем использовать 10 бит адреса, память инструкций должна выдавать на выход данные, расположенные по адресу `addr_i[11:2]`.
|
||||
|
||||
### 2. Память данных
|
||||
|
||||
@@ -259,7 +259,7 @@ mоdulе data_mеm(
|
||||
|
||||
Как и память инструкций, память данных будет состоять из 32-разрядных ячеек. Только теперь их будет 4096, а значит при обращении к ячейкам памяти нужно использовать не 10 бит адреса, а 12. При этом по-прежнему необходимо разделить пришедший адрес на 4, т.е. нужно отбросить два младших бита. Таким образом, обращение к ячейкам памяти (для записи и чтения) должно осуществляться по адресу `addr_i[13:2]`.
|
||||
|
||||
Однако в отличие от памяти инструкций, в память данных добавлено два управляющих сигнала (`mem_req_i`и `write_enable_i`). Сигнал `mem_req_i` является сигналом запроса на работу с памятью. Без этого сигнала память не должна выполнять операции чтения/записи (вне зависимости от сигнала `write_enable`, определяющего происходит сейчас запись или чтение). Как сделать так, чтобы не происходило чтение без запроса? Например не обновлять значение, считанное во время предыдущей операции чтения.
|
||||
Однако в отличие от памяти инструкций, в память данных добавлено два управляющих сигнала (`mem_req_i`и `write_enable_i`). Сигнал `mem_req_i` является сигналом запроса на работу с памятью. Без этого сигнала память не должна выполнять операции чтения/записи (вне зависимости от сигнала `write_enable`, определяющего происходит сейчас запись или чтение). Как сделать так, чтобы не происходило чтение без запроса? Например, не обновлять значение, считанное во время предыдущей операции чтения.
|
||||
|
||||
Если `mem_req_i == 1` и `write_enable_i == 1`, то происходит запрос на запись в память. В этом случае, необходимо записать значение `write_data_i` в ячейку по адресу `addr_i[13:2]`. Во всех других случаях (любой из сигналов `mem_req_i`, `write_enable_i` равен нулю), запись в память не производится.
|
||||
|
||||
@@ -318,7 +318,7 @@ mоdulе rf_r𝚒sсv(
|
||||
3. Реализуйте память данных. Для этого:
|
||||
1. В `Design Sources` проекта создайте `SystemVerilog`-файл `data_mem.sv`.
|
||||
2. Опишите в нем модуль памяти данных с таким же именем и портами, как указано в задании.
|
||||
1. Описание модуля будет схожим с описанием модуля памяти инструкций, однако порт чтения в этот раз будет **синхронным** (запись в него будет происходить в блоке `always_ff`). Кроме того необходимо будет описать логику записи данных в память.
|
||||
1. Описание модуля будет схожим с описанием модуля памяти инструкций, однако порт чтения в этот раз будет **синхронным** (запись в него будет происходить в блоке `always_ff`). Кроме того, необходимо будет описать логику записи данных в память.
|
||||
2. Запись в ячейки памяти описывается подобно записи данных в [регистры](../../Basic%20Verilog%20structures/Registers.md), только при этом, происходит доступ к конкретной ячейке памяти с помощью входа `addr_i` (как осуществляется доступ к ячейкам памяти сказано в разделе [описание памяти на языке SystemVerilog](#описание-памяти-на-языке-systemverilog)).
|
||||
3. Доступ к ячейкам (на запись и чтение) осуществляется по адресу `addr_i[13:2]`.
|
||||
4. Обратите внимание что работа с памятью должна осуществляться только когда сигнал `mem_req_i == 1`, в противном случае запись не должна производиться, а на шине `read_data_o` должен оставаться результат предыдущего чтения.
|
||||
@@ -334,7 +334,7 @@ mоdulе rf_r𝚒sсv(
|
||||
2. Как и у памяти инструкций, порты чтения регистрового файла должны быть **асинхронными**.
|
||||
3. Не забывайте, что у вас 2 порта на чтение и 1 порт на запись, при этом каждый порт не зависит от остальных (в модуле 3 независимых входа адреса).
|
||||
4. Чтение из нулевого регистра (чтение по адресу 0) всегда должно возвращать нулевое значение. Этого можно добиться двумя путями:
|
||||
1. Путем добавления мультиплексора перед выходным сигналом чтения (мультиплексор будет определять, пойдут ли на выход данные из ячейки регистрового файла, либо в случае если адрес равен нулю, на выход пойдет константа ноль).
|
||||
1. Путем добавления мультиплексора перед выходным сигналом чтения (мультиплексор будет определять, пойдут ли на выход данные из ячейки регистрового файла, либо, в случае если адрес равен нулю, на выход пойдет константа ноль).
|
||||
2. Путем инициализации нулевого регистра нулевым значением и запретом записи в этот регистр (при записи и проверки write_enable добавить дополнительную проверку на адрес).
|
||||
3. Каким образом будет реализована эта особенность регистрового файла не важно, выберите сами.
|
||||
3. После описания регистрового файла, его необходимо проверить с помощью [`тестового окружения`](../../Basic%20Verilog%20structures/Testbench.md).
|
||||
|
Reference in New Issue
Block a user