Исправление пунктуационных и орфографических ошибок

В основном вставка пропущенных запятых и удаление лишнего пробела из
союза "а также", но были и другие ошибки и опечатки.
This commit is contained in:
Andrei Solodovnikov
2024-01-11 11:44:44 +03:00
parent 80c4401bdd
commit 688ea46d68
35 changed files with 162 additions and 166 deletions

View File

@@ -1,6 +1,6 @@
# Лабораторная работа 3 "Регистровый файл и внешняя память"
Процессор — это программно-управляемое устройство выполняющее обработку информации и управление этим процессом. Очевидно, программа, которая управляет процессором, должна где-то храниться. Данные, с которыми процессор работает, тоже должны быть в доступном месте. Нужна память!
Процессор — это программно-управляемое устройство, выполняющее обработку информации и управление этим процессом. Очевидно, программа, которая управляет процессором, должна где-то храниться. Данные, с которыми процессор работает, тоже должны быть в доступном месте. Нужна память!
## Цель
@@ -54,7 +54,7 @@
*Рисунок 1. Примеры блоков ПЗУ и ОЗУ*
Кроме того, различают память с **синхронным** и **асинхронным** чтением. В первом случае, перед выходным сигналом шины данных ставится дополнительный регистр, в который по тактовому синхроимпульсу записываются запрашиваемые данные. Такой способ может очень сильно сократить **критический путь** цифровой схемы, но требует дополнительный такт на доступ в память. В свою очередь, асинхронное чтение позволяет получить данные не дожидаясь очередного синхроимпульса, но такой способ увеличивает критический путь.
Кроме того, различают память с **синхронным** и **асинхронным** чтением. В первом случае, перед выходным сигналом шины данных ставится дополнительный регистр, в который по тактовому синхроимпульсу записываются запрашиваемые данные. Такой способ может очень сильно сократить **критический путь** цифровой схемы, но требует дополнительный такт на доступ в память. В свою очередь, асинхронное чтение позволяет получить данные, не дожидаясь очередного синхроимпульса, но такой способ увеличивает критический путь.
Еще одной характеристикой памяти является количество доступных портов. Количество портов определяет к скольким ячейкам памяти можно обратиться одновременно. Проще говоря, сколько входов адреса существует. Все примеры памяти рассмотренные выше являются **однопортовыми**, то есть у них один порт. Например, если у памяти 2 входа адреса `addr1` и `addr2` — это **двухпортовая память**. При этом не важно, можно ли по этим адресам только читать/писать или выполнять обе операции.
@@ -66,11 +66,11 @@
*Рисунок 2. Структурная схема логического блока в ПЛИС*
В логическом блоке есть **таблицы подстановки**(Look Up Table, LUT), которые представляют собой не что иное как память, которая переконфигурируется под нужды хранения, а не реализацию логики. Таким образом, трехвходовой LUT может выступать в роли восьмиразрядной памяти.
В логическом блоке есть **таблицы подстановки** (Look Up Table, LUT), которые представляют собой не что иное как память, которая переконфигурируется под нужды хранения, а не реализацию логики. Таким образом, трехвходовой LUT может выступать в роли восьмиразрядной памяти.
Однако LUT будет сложно приспособить под многопортовую память: посмотрим на схему еще раз: три входа LUT формируют адрес одной из восьми ячеек. Это означает, что среди этих восьми ячеек нельзя обратиться к двум из них одновременно.
Для реализации многопортовой памяти небольшого размера лучше воспользоваться расположенным в логическом блоке D-триггером (**DFF** на *рис. 2*). Не смотря на то, что D-триггер позволяет воспроизвести только 1 разряд элемента памяти, он не ограничивает реализацию по портам.
Для реализации многопортовой памяти небольшого размера лучше воспользоваться расположенным в логическом блоке D-триггером (**DFF** на *рис. 2*). Несмотря на то, что D-триггер позволяет воспроизвести только 1 разряд элемента памяти, он не ограничивает реализацию по портам.
Таким образом, плюс распределенной памяти относительно регистровой заключается в лучшей утилизации ресурсов: одним трёхвходовым LUT можно описать до 8 бит распределенной памяти, в то время как одним D-триггером можно описать только один бит регистровой памяти. Предположим, что в ПЛИС размещены логические блоки, структура которых изображена на *рис. 2* и нам необходимо реализовать 1KiB памяти. Мы можем реализовать распределенную память, используя 64 логических блока (в каждом блоке два трёхвходовых LUT), либо регистровую память, используя 1024 логических блока.
@@ -107,7 +107,7 @@ logic [19:0] memory3 [1:16]; // А вот memory3 хоть и совпадае
// но отличается по адресному пространству
// обращение по нулевому адресу выдаст
// недетерминированный результат. Это не
// значит что память будет плохой или
// значит, что память будет плохой или
// дефектной, просто надо учитывать эту её
// особенность.
```
@@ -230,9 +230,9 @@ mоdulе instr_mеm(
При этом по спецификации процессор RISC-V использует память с побайтовой адресацией. Байтовая адресация означает, что процессор способен обращаться к отдельным байтам в памяти (за каждым байтом памяти закреплен свой индивидуальный адрес).
Однако, если у памяти будут 32-рязрядные ячейки, доступ к конкретному байту будет осложнен, ведь каждая ячейка — это 4 байта. Как получить данные третьего байта памяти? Если обратиться к третьей ячейке в массиве — придут данные 12-15-ых байт (поскольку каждая ячейка содержит по 4 байта). Чтобы получить данные третьего байта, необходимо **разделить значение пришедшего адреса на 4** (отбросив остаток от деления). `3/4=0` — и действительно, если обратиться к нулевой ячейке памяти — будут получены данные 3-го, 2-го, 1-го и 0-го байт. То что помимо значения третьего байта есть еще данные других байт нас в данный момент не интересует, важна только сама возможность указать адрес конкретного байта.
Однако, если у памяти будут 32-рязрядные ячейки, доступ к конкретному байту будет осложнен, ведь каждая ячейка — это 4 байта. Как получить данные третьего байта памяти? Если обратиться к третьей ячейке в массиве — придут данные 12-15-ых байт (поскольку каждая ячейка содержит по 4 байта). Чтобы получить данные третьего байта, необходимо **разделить значение пришедшего адреса на 4** (отбросив остаток от деления). `3/4=0` — и действительно, если обратиться к нулевой ячейке памяти — будут получены данные 3-го, 2-го, 1-го и 0-го байт. То, что помимо значения третьего байта есть еще данные других байт нас в данный момент не интересует, важна только сама возможность указать адрес конкретного байта.
Деление на 2<sup>n</sup> можно осуществить отбросив `n` младших бит числа. Учитывая то, что для адресации 1024 ячеек памяти мы будем использовать 10 бит адреса, память инструкций должна выдавать на выход данные, расположенные по адресу `addr_i[11:2]`.
Деление на 2<sup>n</sup> можно осуществить, отбросив `n` младших бит числа. Учитывая то, что для адресации 1024 ячеек памяти мы будем использовать 10 бит адреса, память инструкций должна выдавать на выход данные, расположенные по адресу `addr_i[11:2]`.
### 2. Память данных
@@ -259,7 +259,7 @@ mоdulе data_mеm(
Как и память инструкций, память данных будет состоять из 32-разрядных ячеек. Только теперь их будет 4096, а значит при обращении к ячейкам памяти нужно использовать не 10 бит адреса, а 12. При этом по-прежнему необходимо разделить пришедший адрес на 4, т.е. нужно отбросить два младших бита. Таким образом, обращение к ячейкам памяти (для записи и чтения) должно осуществляться по адресу `addr_i[13:2]`.
Однако в отличие от памяти инструкций, в память данных добавлено два управляющих сигнала (`mem_req_i`и `write_enable_i`). Сигнал `mem_req_i` является сигналом запроса на работу с памятью. Без этого сигнала память не должна выполнять операции чтения/записи (вне зависимости от сигнала `write_enable`, определяющего происходит сейчас запись или чтение). Как сделать так, чтобы не происходило чтение без запроса? Например не обновлять значение, считанное во время предыдущей операции чтения.
Однако в отличие от памяти инструкций, в память данных добавлено два управляющих сигнала (`mem_req_i`и `write_enable_i`). Сигнал `mem_req_i` является сигналом запроса на работу с памятью. Без этого сигнала память не должна выполнять операции чтения/записи (вне зависимости от сигнала `write_enable`, определяющего происходит сейчас запись или чтение). Как сделать так, чтобы не происходило чтение без запроса? Например, не обновлять значение, считанное во время предыдущей операции чтения.
Если `mem_req_i == 1` и `write_enable_i == 1`, то происходит запрос на запись в память. В этом случае, необходимо записать значение `write_data_i` в ячейку по адресу `addr_i[13:2]`. Во всех других случаях (любой из сигналов `mem_req_i`, `write_enable_i` равен нулю), запись в память не производится.
@@ -318,7 +318,7 @@ mоdulе rf_r𝚒sсv(
3. Реализуйте память данных. Для этого:
1. В `Design Sources` проекта создайте `SystemVerilog`-файл `data_mem.sv`.
2. Опишите в нем модуль памяти данных с таким же именем и портами, как указано в задании.
1. Описание модуля будет схожим с описанием модуля памяти инструкций, однако порт чтения в этот раз будет **синхронным** (запись в него будет происходить в блоке `always_ff`). Кроме того необходимо будет описать логику записи данных в память.
1. Описание модуля будет схожим с описанием модуля памяти инструкций, однако порт чтения в этот раз будет **синхронным** (запись в него будет происходить в блоке `always_ff`). Кроме того, необходимо будет описать логику записи данных в память.
2. Запись в ячейки памяти описывается подобно записи данных в [регистры](../../Basic%20Verilog%20structures/Registers.md), только при этом, происходит доступ к конкретной ячейке памяти с помощью входа `addr_i` (как осуществляется доступ к ячейкам памяти сказано в разделе [описание памяти на языке SystemVerilog](#описание-памяти-на-языке-systemverilog)).
3. Доступ к ячейкам (на запись и чтение) осуществляется по адресу `addr_i[13:2]`.
4. Обратите внимание что работа с памятью должна осуществляться только когда сигнал `mem_req_i == 1`, в противном случае запись не должна производиться, а на шине `read_data_o` должен оставаться результат предыдущего чтения.
@@ -334,7 +334,7 @@ mоdulе rf_r𝚒sсv(
2. Как и у памяти инструкций, порты чтения регистрового файла должны быть **асинхронными**.
3. Не забывайте, что у вас 2 порта на чтение и 1 порт на запись, при этом каждый порт не зависит от остальных (в модуле 3 независимых входа адреса).
4. Чтение из нулевого регистра (чтение по адресу 0) всегда должно возвращать нулевое значение. Этого можно добиться двумя путями:
1. Путем добавления мультиплексора перед выходным сигналом чтения (мультиплексор будет определять, пойдут ли на выход данные из ячейки регистрового файла, либо в случае если адрес равен нулю, на выход пойдет константа ноль).
1. Путем добавления мультиплексора перед выходным сигналом чтения (мультиплексор будет определять, пойдут ли на выход данные из ячейки регистрового файла, либо, в случае если адрес равен нулю, на выход пойдет константа ноль).
2. Путем инициализации нулевого регистра нулевым значением и запретом записи в этот регистр (при записи и проверки write_enable добавить дополнительную проверку на адрес).
3. Каким образом будет реализована эта особенность регистрового файла не важно, выберите сами.
3. После описания регистрового файла, его необходимо проверить с помощью [`тестового окружения`](../../Basic%20Verilog%20structures/Testbench.md).