Стилистические правки

This commit is contained in:
Andrei Solodovnikov
2024-07-01 16:58:11 +03:00
parent 6b12170f4a
commit 06dc07c03f
9 changed files with 26 additions and 30 deletions

View File

@@ -6,7 +6,7 @@
Используя навыки по описанию мультиплексоров, писать блок арифметико-логического устройства (АЛУ) на языке SystemVerilog.
## Допуск к лабораторной работе
## Материалы для подготовки к лабораторной работе
Освоить [описание мультиплексора на языке SystemVerilog](../../Basic%20Verilog%20structures/Multiplexors.md).
@@ -20,7 +20,7 @@
## Теория
Арифметико-логическое устройство (АЛУ, Arithmetic Logic Unit ALU) это блок процессора, выполняющий арифметические и поразрядно логические операции. Разница между арифметическими и логическими операциями в отсутствии у последних бита переноса, так как логические операции происходят между однобитными числами и дают однобитный результат, а в случае АЛУ (в рамках данной лабораторной работы) одновременно между 32-мя однобитными парами чисел. В логических операциях результаты значений отдельных битов друг с другом никак не связаны.
Арифметико-логическое устройство (АЛУ, Arithmetic Logic Unit ALU) это блок процессора, выполняющий арифметические и поразрядно логические операции. Разница между арифметическими и логическими операциями в отсутствии у последних бита переноса, так как логические операции происходят между 1-битными числами и дают 1-битный результат, а в случае АЛУ (в рамках данной лабораторной работы) одновременно между 32-мя 1-битными парами чисел. В логических операциях результаты значений отдельных битов друг с другом никак не связаны.
Также, кроме результата операций, АЛУ формирует флаги, которые показывают выполняется ли заданное условие. Например, выведет `1`, если один операнд меньше другого.
@@ -30,11 +30,11 @@
_Рисунок 1. Структурное обозначение элемента АЛУ[1, стр.305]._
На рис. 1 изображен пример АЛУ, используемый в книге "Цифровая схемотехника и архитектура компьютера" Харрис и Харрис. На входы `A` и `B` поступают операнды с разрядностью _N_. На трехбитный вход `F` подается код операции. Например, если туда подать `000`, то на выходе `Y` появится результат операции огическое И_ между битами операндов `A` и `B`. Если на `F` подать `010`, то на выходе появится результат сложения. Это лишь пример, разрядность и коды могут отличаться в зависимости от количества выполняемых операций и архитектуры.
На рис. 1 изображен пример АЛУ, используемый в книге "Цифровая схемотехника и архитектура компьютера" Харрис и Харрис. На входы `A` и `B` поступают операнды с разрядностью _N_. На 3-битный вход `F` подается код операции. Например, если туда подать `000`, то на выходе `Y` появится результат операции огическое И_ между битами операндов `A` и `B`. Если на `F` подать `010`, то на выходе появится результат сложения. Это лишь пример, разрядность и коды могут отличаться в зависимости от количества выполняемых операций и архитектуры.
Существует несколько подходов к реализации АЛУ, отличающиеся внутренней организацией. В лабораторных работах применяется повсеместно используемый подход мультиплексирования операций, то есть подключения нескольких операционных устройств (которые выполняют какие-то операции, например сложения, логическое И и т.п.) к мультиплексору, который будет передавать результат нужного операционного устройства на выходы АЛУ.
Рассмотрим на примере все того же АЛУ MIPS из книги Харрисов. На рис. 2, в левой его части, изображена внутренняя организация этого АЛУ, справа таблица соответствия кодов операциям. На выходе схемы (внизу) стоит четырехвходовый мультиплексор, управляемый двумя из трех битов `F`. К его входам подключены _N_ логических И (побитовое И _N_-разрядных операндов), _N_ логических ИЛИ, _N_-разрядный сумматор и Zero Extend устройство делающее из однобитного числа _N_-битное число, дополняя нулями слева.
Рассмотрим на примере все того же АЛУ MIPS из книги Харрисов. На рис. 2, в левой его части, изображена внутренняя организация этого АЛУ, справа таблица соответствия кодов операциям. На выходе схемы (внизу) стоит четырехвходовый мультиплексор, управляемый двумя из трех битов `F`. К его входам подключены _N_ логических И (побитовое И _N_-битных операндов), _N_ логических ИЛИ, _N_-битный сумматор и Zero Extend устройство делающее из 1-битного числа _N_-битное число, дополняя нулями слева.
К одному из входов этих операционных устройств подключен `A` без изменений, а ко второму подключен выход двухвходового мультиплексора, управляемого оставшимся битом _F_. То есть `F[2]` определяет, что будет вторым операндом: `B` или `~B`. Вдобавок `F[2]` подается на входной перенос сумматора, то есть, когда `F[2] == 1` на выходе сумматора появляется результат операции `A + ~B + 1`, что (с учетом [дополнительного кода](https://ru.wikipedia.org/wiki/Дополнительный_код)) эквивалентно `A  B`.